GPS News  
SOLAR DAILY
NIST study uncovers a potential driver of premature solar panel failures
by Staff Writers
Washington DC (SPX) Mar 13, 2020

Cracks often form on solar panel backsheets in straight lines, along the gaps between solar cells.

Unlike diamonds, solar panels are not forever. Ultraviolet rays, gusts of wind and heavy rain wear away at them over their lifetime.

Manufacturers typically guarantee that panels will endure the elements for at least 25 years before experiencing significant drop-offs in power generation, but recent reports highlight a trend of panels failing decades before expected. For some models, there has been a spike in the number of cracked backsheets - layers of plastic that electrically insulate and physically shield the backsides of solar panels.

The premature cracking has largely been attributed to the widespread use of certain plastics, such as polyamide, but the reason for their rapid degradation has been unclear. By closely examining cracked polyamide-based backsheets, researchers at the National Institute of Standards and Technology (NIST) and colleagues have uncovered how interactions between these plastics, environmental factors and solar panel architecture may be speeding up the degradation process. These findings could aid researchers in the development of improved durability tests and longer-lived solar panels.

Cracks in backsheets often show up first near certain features - such as the grid-shaped space in between the blue or black electricity-producing solar cells - and can eventually propagate through the entire thickness of a sheet. These defects make way for oxygen and moisture to infiltrate and damage the interior where the cells lie and also allow electrical current to escape, increasing risks of electrocution.

If left outside for long enough, any plastic-based backsheet will start to fall apart, but not all backsheets are created equal. Some plastics deteriorate much more rapidly than others.

"In the 2010 to 2012 timeframe, many modules were deployed containing polyamide-based backsheets, which presented dramatic cracking failure in as little as four years despite meeting standard requirements," said Xiaohong Gu, NIST materials engineer and co-author of the study.

To get to the root of polyamide's degradation problem, Gu and her team acquired backsheet samples from solar panels deployed in regions around the globe, including sites in the U.S., China, Thailand and Italy. Most of the panels, which were in use from three to six years, showed clear signs of premature cracking.

With the weathered backsheets in hand, the researchers conducted a gamut of chemical and mechanical tests to examine the patterns and severity of degradation throughout the depth of the sheets. The results, described in the journal Progress in Photovoltaics: Research and Applications, showed that the areas of the sheets that had undergone the worst cracking were those that had become the most rigid. And curiously, the most brittle areas were on the inner side of the sheets, Gu said.

How could the quality of the walled-off interior diminish more quickly than the exposed outer layer? Gu and her team speculated that the sunlight-induced degradation of the top side of the encapsulant - a film that surrounds the solar cells - produced damaging chemicals that descended toward the backsheets, speeding up their decay. If true, the proposed mechanism would explain why cracks form in between solar cells, as chemicals could find passage to the back through these regions.

The researchers identified acetic acid as a prime suspect, as it is known to be harmful to polyamide and is produced during the degradation of a polymer commonly used as an encapsulant, called ethylene vinyl acetate (EVA). To test their hypothesis, the researchers stowed several polyamide strips away in vials of acetic acid and then, after five months, analyzed how they decayed compared with strips placed in either air or water.

Under the microscope, cracks mirroring those from the weathered backsheets appeared on the surface of the plastic strips exposed to acetic acid, which appeared much worse than on those that had been in air or water. Chemical analysis showed that degradation products of polyamide were higher in the acetic-acid-exposed strips, providing further evidence that the acid accelerates the deterioration of the backsheet material.

The study highlights the interplay between solar panel components (the EVA encapsulant and polyamide backsheet in this case) as a potentially critical factor to consider when designing solar panels that are built to last.

These new insights into premature failures could also become valuable to NIST researchers and others who seek to replicate the degradation process in the lab as a way to test and predict the longevity of solar panel components.

Research paper


Related Links
National Institute Of Standards And Technology
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Ultrathin organic solar cell is both efficient and durable
Tokyo, Japan (SPX) Mar 10, 2020
Scientists from the RIKEN Cluster for Pioneering Research and RIKEN Center for Emergent Matter Science have succeeded, in collaboration with international partners, in creating an ultrathin organic solar cell that is both highly efficient and durable. Using a simple post-annealing process, they created a flexible organic cell that degrades by less than 5 percent over 3,000 hours in atmospheric conditions and that simultaneously has an energy conversion ratio - a key indicator of solar cell perform ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Kenya bans controversial donkey slaughter trade

DR Congo latest victim of locust swarms: experts

Satellites, field cameras, and farmers team up

Cover crops can benefit hot, dry soils

SOLAR DAILY
The ink of the future in printed electronics

A small step for atoms, a giant leap for microelectronics

Bristol scientists demonstrate first non-volatile nano relay operation at 200C

A talented 2D material gets a new gig

SOLAR DAILY
Cathay Pacific 2019 profits plunge, predicts virus losses

Optimised flight routes for climate-friendly air transport

Transportation Command head questions Air Force's plan for refueler upgrades

India, U.S. ink $3B deal for helicopters

SOLAR DAILY
Driver's-ed-inspired system could make automated parallel parking more accessible

Self-driving car trajectory tracking gets closer to human-driver ideal

Tesla resumes work on German plant after court ruling

GM unveils long-range battery in fresh electric car push

SOLAR DAILY
Japan unveils fresh economic package to offset virus damage

China allows some firms to resume work at virus epicentre

China inflation slips but stays high on virus, food worries

China exports plunge on coronavirus epidemic

SOLAR DAILY
Bushfires burned a fifth of Australia's forest: study

Close to tipping point, Amazon could collapse in 50 years

Protecting flood-controlling mangrove forests pays for itself

Burned area trends in the Amazon similar to previous years

SOLAR DAILY
Kleos Data to Target Environmental Challenges in Brazil

Space video company Sen awards multimillion-euro contract to NanoAvionics

World View Stratollite fleet to provide high resolution imagery and data analytics in the Americas

NASA images show fall in China pollution over virus shutdown

SOLAR DAILY
New DNA origami motor breaks speed record for nano machines

Deep-sea osmolyte makes biomolecular machines heat-tolerant

Nanobubbles in nanodroplets

New production method for carbon nanotubes gets green light









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.