GPS News  
IRON AND ICE
NASA's OSIRIS-REx discovers sunlight can crack rocks on Asteroid Bennu
by Agency Writers for GSFC News
Greenbelt MD (SPX) Jun 10, 2020

Examples of disaggregation (top) and linear fractures (bottom) in boulders on asteroid Bennu from images taken by NASA's OSIRIS-REX spacecraft. In the bottom row, fracture orientations are (d) west-northwest to east-southeast and (e, f) north to south.

Asteroids don't just sit there doing nothing as they orbit the Sun. They get bombarded by meteoroids, blasted by space radiation, and now, for the first time, scientists are seeing evidence that even a little sunshine can wear them down.

Rocks on asteroid Bennu appear to be cracking as sunlight heats them up during the day and they cool down at night, according to images from NASA's OSIRIS-REx (Origins Spectral Interpretation Resource Identification Security - Regolith Explorer) spacecraft.

"This is the first time evidence for this process, called thermal fracturing, has been definitively observed on an object without an atmosphere," said Jamie Molaro of the Planetary Science Institute, Tucson, Arizona, lead author of a paper appearing in Nature Communications June 9. "It is one piece of a puzzle that tells us what the surface used to be like, and what it will be like millions of years from now."

"Like any weathering process, thermal fracturing causes the evolution of boulders and planetary surfaces over time - from changing the shape and size of individual boulders, to producing pebbles or fine-grained regolith, to breaking down crater walls," said OSIRIS-REx principal investigator Dante Lauretta of the University of Arizona, Tucson.

"How quickly this occurs relative to other weathering processes tells us how and how quickly the surface has changed."

Rocks expand when sunlight heats them during the day and contract as they cool down at night, causing stress that forms cracks that grow slowly over time. Scientists have thought for a while that thermal fracturing could be an important weathering process on airless objects like asteroids because many experience extreme temperature differences between day and night, compounding the stress.

For example, daytime highs on Bennu can reach almost 127 degrees Celsius or about 260 degrees Fahrenheit, and nighttime lows plummet to about minus 73 degrees Celsius or nearly minus 100 degrees Fahrenheit. However, many of the telltale features of thermal fracturing are small, and before OSIRIS-REx got close to Bennu, the high-resolution imagery required to confirm thermal fracturing on asteroids didn't exist.

The mission team found features consistent with thermal fracturing using the spacecraft's OSIRIS-REx Camera Suite (OCAMS), which can see features on Bennu smaller than one centimeter (almost 0.4 inches).

It found evidence of exfoliation, where thermal fracturing likely caused small, thin layers (1 - 10 centimeters) to flake off of boulder surfaces. The spacecraft also produced images of cracks running through boulders in a north-south direction, along the line of stress that would be produced by thermal fracturing on Bennu.

Other weathering processes can produce similar features, but the team's analysis ruled them out. For example, rain and chemical activity can produce exfoliation, but Bennu has no atmosphere to produce rain.

Rocks squeezed by tectonic activity can also exfoliate, but Bennu is too small for such activity. Meteoroid impacts do occur on Bennu and can certainly crack rocks, but they would not cause the even erosion of layers from boulder surfaces that were seen. Also, there's no sign of impact craters where the exfoliation is occurring.

Additional studies of Bennu could help determine how rapidly thermal fracturing is wearing down the asteroid, and how it compares to other weathering processes.

"We don't have good constraints yet on breakdown rates from thermal fracturing, but we can get them now that we can actually observe it for the first time in situ," said OSIRIS-REx project scientist Jason Dworkin of NASA's Goddard Space Flight Center in Greenbelt, Maryland. "Laboratory measurements on the properties of the samples returned by the spacecraft in 2023 will help us learn more about how this process works."

Another area of research is how thermal fracturing affects our ability to estimate the age of surfaces. In general, the more weathered a surface is, the older it is. For example, a region with a lot of craters is likely to be older than an area with few craters, assuming impacts happen at a relatively constant rate across an object.

However, additional weathering from thermal fracturing could complicate an age estimate, because thermal fracturing is going to happen at a different rate on different bodies, depending on things like their distance from the Sun, the length of their day, and the composition, structure and strength of their rocks.

On bodies where thermal fracturing is efficient, then it may cause crater walls to break down and erode faster. This would make the surface look older according the cratering record, when in fact it is actually younger. Or the opposite could occur. More research on thermal fracturing on different bodies is needed to start to get a handle on this, according to Molaro.


Related Links
OSIRIS-REx
Asteroid and Comet Mission News, Science and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


IRON AND ICE
Ancient asteroids helped synthesize life's molecular building blocks, study finds
Washington DC (UPI) Jun 08, 2020
Before life began, Earth needed amino acids, the building blocks for proteins. New research suggests ancient asteroid impacts in Earth's primordial oceans could have produced the molecules needed to kick-start life. In the lab, scientists used a stage propellant gun to simulate the violent impact featuring water and a variety of organic chemicals, including carbon dioxide, nitrogen and iron. The experimental collisions yielded glycine and alanine, a pair of amino acids that form proteins ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Ancient burial site in Belize reveals when people started eating maize

Eight killed in Indian pesticide factory blast

Taking microgreens beyond the garnish

'It's kind of glum': US farmers worry as crop prices dip

IRON AND ICE
Engineers put tens of thousands of artificial brain synapses on a single chip

Carbon nanotube transistors make the leap from lab to factory floor

DARPA Selects Teams to Increase Security of Semiconductor Supply Chain

Silicon 'neurons' may add a new dimension to computer processors

IRON AND ICE
GAO: New presidential helicopters need better communications system

Research into flexible wing surfaces at DLR

US scales back China airline ban to permit 2 weekly flights

B-21 bomber's advanced software may turn it into 'technological powerhouse'

IRON AND ICE
S. Korea's self-driving upstarts take on tech giants

Southern California's Marengo Charging Plaza officially opens to the public

Volkswagen invests 2 bn euros in Chinese electric vehicle sector

Top German court to rule on VW 'Dieselgate' compensation

IRON AND ICE
Adidas sees green shoots in China after virus shock

Trump threatens EU, China tariffs over lobster duties

China says US trade sanctions on Hong Kong violate WTO rules

Lawsuit says Amazon failed to protect warehouse staff from virus

IRON AND ICE
Bolsonaro using virus against indigenous people: leader

Football pitch of rainforest destroyed every six seconds

Trees in forests all over the world are getting younger, shorter

Tropical forests can handle the heat, up to a point

IRON AND ICE
RACE dashboard now available

Environmental damage from fog reduction is observable from outer space

Study shows today's atmospheric carbon dioxide levels greater than 23 million-year record

NASA ocean ecosystem mission preparing to make waves

IRON AND ICE
Transporting energy through a single molecular nanowire

To make an atom-sized machine, you need a quantum mechanic

Magnetic nanoparticles help researchers remotely release adrenal hormones









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.