Subscribe free to our newsletters via your
. GPS News .




STELLAR CHEMISTRY
NASA's Hubble Spots Rare Gravitational Arc from Distant, Hefty Galaxy Cluster
by Donna Weaver for Hubble Science News
Baltimore MD (SPX) Jun 28, 2012


Credit: NASA, ESA, A. Gonzalez (University of Florida, Gainsville), M. Brodwin (University of Missouri-Kansas City), and A. Stanford (University of California at Davis).

Seeing is believing, except when you don't believe what you see. Astronomers using NASA's Hubble Space Telescope have found a puzzling arc of light behind an extremely massive cluster of galaxies residing 10 billion light-years away. The galactic grouping, discovered by NASA's Spitzer Space Telescope, was observed when the universe was roughly a quarter of its current age of 13.7 billion years.

The giant arc is the stretched shape of a more distant galaxy whose light is distorted by the monster cluster's powerful gravity, an effect called gravitational lensing.

The trouble is, the arc shouldn't exist. "When I first saw it, I kept staring at it, thinking it would go away," said study leader Anthony Gonzalez of the University of Florida in Gainesville.

"According to a statistical analysis, arcs should be extremely rare at that distance. At that early epoch, the expectation is that there are not enough galaxies behind the cluster bright enough to be seen, even if they were 'lensed' or distorted by the cluster. The other problem is that galaxy clusters become less massive the farther back in time you go. So it's more difficult to find a cluster with enough mass to be a good lens for gravitationally bending the light from a distant galaxy."

Galaxy clusters are collections of hundreds to thousands of galaxies bound together by gravity. They are the most massive structures in our universe. Astronomers frequently study galaxy clusters to look for faraway, magnified galaxies behind them that would otherwise be too dim to see with telescopes. Many such gravitationally lensed galaxies have been found behind galaxy clusters closer to Earth.

The surprise in this Hubble observation is spotting a galaxy lensed by an extremely distant cluster. Dubbed IDCS J1426.5+3508, the cluster is the most massive found at that epoch, weighing as much as 500 trillion suns. It is 5 to 10 times larger than other clusters found at such an early time in the universe's history.

The team spotted the cluster in a search using NASA's Spitzer Space Telescope in combination with archival optical images taken as part of the National Optical Astronomy Observatory's Deep Wide Field Survey at the Kitt Peak National Observatory, Tucson, Ariz. The combined images allowed them to see the cluster as a grouping of very red galaxies, indicating they are far away.

This unique system constitutes the most distant cluster known to "host" a giant gravitationally lensed arc. Finding this ancient gravitational arc may yield insight into how, during the first moments after the big bang, conditions were set up for the growth of hefty clusters in the early universe.

The arc was spotted in optical images of the cluster taken in 2010 by Hubble's Advanced Camera for Surveys. The infrared capabilities of Hubble's Wide Field Camera 3 (WFC3) helped provide a precise distance, confirming it to be one of the farthest clusters yet discovered.

Once the astronomers determined the cluster's distance, they used Hubble, the Combined Array for Research in Millimeter-wave Astronomy (CARMA) radio telescope, and NASA's Chandra X-ray Observatory to independently show that the galactic grouping is extremely massive.

CARMA helped the astronomers determine the cluster's mass by measuring how primordial light from the big bang was affected as it passed through the extremely hot, tenuous gas that permeates the grouping. The astronomers then used the WFC3 observations to map the cluster's mass by calculating how much cluster mass was needed to produce the gravitational arc. Chandra data, which revealed the cluster's brightness in X-rays, was also used to measure the cluster's mass.

"The chance of finding such a gigantic cluster so early in the universe was less than one percent in the small area we surveyed," said team member Mark Brodwin of the University of Missouri-Kansas City. "It shares an evolutionary path with some of the most massive clusters we see today, including the Coma Cluster and the recently discovered El Gordo Cluster."

An analysis of the arc revealed that the lensed object is a star-forming galaxy that existed 10 billion to 13 billion years ago. The team hopes to use Hubble again to obtain a more accurate distance to the lensed galaxy.

Gonzalez has considered several possible explanations for the arc.

One explanation is that distant galaxy clusters, unlike nearby clusters, have denser concentrations of galaxies at their cores, making them better magnifying glasses. However, even if the distant cores were denser, the added bulk still should not provide enough gravitational muscle to produce the giant arc seen in Gonzalez's observations, according to a statistical analysis.

Another possibility is that the initial microscopic fluctuations in matter made right after the big bang were different from those predicted by standard cosmological simulations, and therefore produced more massive clusters than expected.

"I'm not yet convinced by any of these explanations," Gonzalez said. "After all, we have found only one example. We really need to study more extremely massive galaxy clusters that existed between 8 billion and 10 billion years ago to see how many more gravitationally lensed objects we can find."

The team's results are described in three papers, which will appear in the July 10, 2012 issue of The Astrophysical Journal. Gonzalez is the first author on one of the papers; Brodwin, on another; and Adam Stanford of the University of California at Davis, on the third.

.


Related Links
Hubble at NASA
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
VLT Takes a Close Look at NGC 6357
Munich, Germany (SPX) Jun 28, 2012
ESO's Very Large Telescope (VLT) has taken the most detailed image so far of a spectacular part of the stellar nursery called NGC 6357. The view shows many hot young stars, glowing clouds of gas and weird dust formations sculpted by ultraviolet radiation and stellar winds. Deep in the Milky Way in the constellation of Scorpius (The Scorpion) lies NGC 6357 [1], a region of space where new s ... read more


STELLAR CHEMISTRY
Pasta made from green banana flour a tasty alternative for gluten free diets

S. America cattle outbreak threat lingers

Philippines rice terraces off endangered list: UN

U.S. urges action on global cattle disease

STELLAR CHEMISTRY
New technique allows simulation of noncrystalline materials

Study of phase change materials could lead to better computer memory

Japan's Renesas says major investors to offer aid

Megapixel camera? Try gigapixel

STELLAR CHEMISTRY
Northrop Grumman's F-35 DAS and Radar Demonstrate Ability to Detect, Track, Target Ballistic Missiles

Canada to buy new jet trainer aircraft

LockMart Provides Italian MoD with Intelligence, Surveillance and Reconnaissance Aircraft

Variable camber airfoil: New concept, new challenge

STELLAR CHEMISTRY
Primus Green Energy Alternative Gasoline Powers Car in Test Drive

Maths tells us when to be more alert on the roads

Rheinmetall shelves listing of automotive division

Nissan's China unit to build new $784 mn auto plant

STELLAR CHEMISTRY
Hong Kong, China stock exchanges in joint venture

Intellectual property thefts are costly

Paraguay says neighbors plotting isolation

EU, US, Japan step up rare earths battle with China

STELLAR CHEMISTRY
Taiwan indicts loggers for axing 2000-year-old trees

Study Slashes Deforestation Carbon Emission Estimate

Scientists develop first satellite deforestation tracker for whole of Latin America

Scientists reconstruct pre-Columbian human effects on the Amazon Basin

STELLAR CHEMISTRY
Arianespace to launch DZZ-HR high-resolution observation satellite

China to invest in Earth monitoring system

Delving Inside Earth from Space

Earth observation for us and our planet

STELLAR CHEMISTRY
Researchers test carbon nanotube-based ultra-low voltage integrated circuits

Researchers tune the strain in graphene drumheads to create quantum dots

Graphene? From any lab!

Taming light with graphene




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement