GPS News  
STELLAR CHEMISTRY
NASA continues to study pulsars, 50 years after their chance discovery
by Clare Skelly for GSFC News
Greenbelt MD (SPX) Aug 02, 2017


Most known neutron stars are observed as pulsars, emitting narrow, sweeping beams of radiation. They squeeze up to two solar masses into a city-size volume, crushing matter to the highest possible stable densities. To explore these exotic states of matter, NICER measures X-ray emissions across the surfaces of neutron stars as they spin, ultimately confronting the predictions of nuclear physics theory. Credits: NASA's Goddard Space Flight Center

A little bit of "scruff" in scientific data 50 years ago led to the discovery of pulsars - rapidly spinning dense stellar corpses that appear to pulse at Earth.

Astronomer Jocelyn Bell made the chance discovery using a vast radio telescope in Cambridge, England. Although it was built to measure the random brightness flickers of a different category of celestial objects called quasars, the 4.5-acre telescope produced unexpected markings on Bell's paper data recorder every 1.33730 seconds. The pen traces representing radio brightness revealed an unusual phenomenon.

"The pulses were so regular, so much like a ticking clock, that Bell and her supervisor Anthony Hewish couldn't believe it was a natural phenomenon," said Zaven Arzoumanian of NASA's Goddard Space Flight Center in Greenbelt, Maryland. "Once they found a second, third and fourth they started to think differently."

The unusual stellar objects had been previously predicted but never observed. Today, scientists know of over 2,000 pulsars. These rotating "lighthouse" neutron stars begin their lives as stars between about seven and 20 times the mass of our sun. Some are found to spin hundreds of times per second, faster than the blades of a household blender, and they possess enormously strong magnetic fields.

Technology advances in the past half-century allowed scientists to study these compact stellar objects from space using different wavelengths of light, especially those much more energetic than the radio waves received by the Cambridge telescope. Several current NASA missions continue to study these natural beacons.

The Neutron star Interior Composition Explorer, or NICER, is the first NASA mission dedicated to studying pulsars. In a nod to the anniversary of Bell's discovery, NICER observed the famous first pulsar, known today as PSR B1919+21.

NICER launched to the International Space Station in early June and started science operations last month. Its X-ray observations - the part of the electromagnetic spectrum in which these stars radiate both from their million-degree solid surfaces and from their strong magnetic fields - will reveal how nature's fundamental forces behave within the cores of these objects, an environment that doesn't exist and can't be reproduced anywhere else. "What's inside a pulsar?" is one of many long-standing astrophysics questions about these ultra-dense, fast-spinning, powerfully magnetic objects.

The "stuff" of pulsars is a collection of particles familiar to scientists from over a century of laboratory studies on Earth - neutrons, protons, electrons, and perhaps even their own constituents, called quarks. However, under such extreme conditions of pressure and density, their behavior and interactions aren't well understood. New, precise measurements, especially of the sizes and masses of pulsars are needed to pin down theories.

"Many nuclear-physics models have been developed to explain how the make-up of neutron stars, based on available data and the constraints they provide," said Goddard's Keith Gendreau, the principal investigator for NICER.

"NICER's sensitivity, X-ray energy resolution and time resolution will improve these by more precisely measuring their radii, to an order of magnitude improvement over the state of the art today."

The mission will also pave the way for future space exploration by helping to develop a Global Positioning System-like capability for the galaxy. The embedded Station Explorer for X-ray Timing and Navigation Technology, or SEXTANT, demonstration will use NICER's X-ray observations of pulsar signals to determine NICER's exact position in orbit.

"You can time the pulsations of pulsars distributed in many directions around a spacecraft to figure out where the vehicle is and navigate it anywhere," said Arzoumanian, who is also the NICER science lead. "That's exactly how the GPS system on Earth works, with precise clocks flown on satellites in orbit."

Scientists have tested this method using computer and lab simulations. SEXTANT will demonstrate pulsar-based navigation for the first time in space.

NICER-SEXTANT is the first astrophysics mission dedicated to studying pulsars, 50 years after their discovery. "I think it is going to yield many more scientific discoveries than we can anticipate now," said Gendreau.

NICER-SEXTANT is a two-in-one mission. NICER is an Astrophysics Mission of Opportunity within NASA's Explorer program, which provides frequent flight opportunities for world-class scientific investigations from space utilizing innovative, streamlined, and efficient management approaches within the heliophysics and astrophysics science areas. NASA's Space Technology Mission Directorate supports the SEXTANT component of the mission, demonstrating pulsar-based spacecraft navigation.

STELLAR CHEMISTRY
Vast new super cluster of galaxies named Saraswati
Pune, India (SPX) Jul 14, 2017
A team of astronomers from the Inter University Centre for Astronomy and Astrophysics (IUCAA) and Indian Institute of Science Education and Research (IISER), both in Pune, India, and members of two other Indian universities, have identified a previously unknown, extremely large supercluster of galaxies located in the direction of constellation Pisces. This is one of the largest known structures ... read more

Related Links
NICER at NASA
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Neolithic farmers practiced specialized methods of cattle farming

Adjusting fertilizers vital in claypan ag soils

Disneyland China falls a-fowl of huge turkey leg demand

One plant at a time is precise

STELLAR CHEMISTRY
Ultracold molecules hold promise for quantum computing

Hamburg researchers develop new transistor concept

Five times the computing power

Pulses of electrons manipulate nanomagnets and store information

STELLAR CHEMISTRY
Lockheed receives contract 50 F-35s for foreign military sales

Boeing, U.S. military finish EMP testing on KC-46 tanker

Switzerland approved for F/A-18 upgrade package

China Eastern Airlines to acquire 10% of Air France-KLM

STELLAR CHEMISTRY
Sophisticated medical imaging technique proves useful for automotive industry

Volkswagen to refit 1 million more diesel cars in Germany

Los Angeles to have fully electric bus fleet by 2030

Is 'diesel summit' the last chance for Germany's favourite engine

STELLAR CHEMISTRY
China tells Trump not to link trade to N. Korea

Economic rebound bypasses Spain's poorest neighbourhood

China manufacturing expansion slows in July

Starbucks takes full control of China stores in $1.3 bn deal

STELLAR CHEMISTRY
EU court orders Poland to suspend logging in ancient forest

Poland to keep logging in ancient forest: minister

Poles revive ancient tradition of timber floating

Trees can make or break city weather

STELLAR CHEMISTRY
Aalto-1 satellite sends first image back to VTT Finland

NASA Solves a Drizzle Riddle

Nickel key to Earth's magnetic field, research shows

Manmade aerosols identified as driver in shifting global rainfall patterns

STELLAR CHEMISTRY
New method promises easier nanoscale manufacturing

Nanoparticles could spur better LEDs, invisibility cloaks

New material resembling a metal nanosponge could reduce computer energy consumption

How do you build a metal nanoparticle?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.