Subscribe free to our newsletters via your
. GPS News .




SOLAR SCIENCE
NASA Telescopes Coordinate Best-Ever Flare Observations
by Karen C. Fox for Goddard Space Flight Center
Greenbelt MD (SPX) May 09, 2014


This combined image shows the March 29, 2014, X-class flare as seen through the eyes of different observatories. SDO is on the bottom/left, which helps show the position of the flare on the sun. The darker orange square is IRIS data. The red rectangular inset is from Sacramento Peak. The violet spots show the flare's footpoints from RHESSI. Watch the movie to see the wealth of colorful NASA observations of an X-class flare on March 29 - the most comprehensively observed flare, ever. Credit: NASA/NSO/Goddard Space Flight Center

On March 29, 2014, an X-class flare erupted from the right side of the sun... and vaulted into history as the best-observed flare of all time. The flare was witnessed by four different NASA spacecraft and one ground-based observatory - three of which had been fortuitously focused in on the correct spot as programmed into their viewing schedule a full day in advance.

To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications.

"This is the most comprehensive data set ever collected by NASA's Heliophysics Systems Observatory," said Jonathan Cirtain, project scientist for Hinode at NASA's Marshall Space Flight Center in Huntsville, Ala. "Some of the spacecraft observe the whole sun all the time, but three of the observatories had coordinated in advance to focus on a specific active region of the sun. We need at least a day to program in observation time and the target - so it was extremely fortunate that we caught this X-class flare."

Images and data from the various observations can be seen in the accompanying slide show. The telescopes involved were: NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. Numerous other spacecraft provided additional data about what was happening on the sun during the event and what the effects were at Earth.

NASA's Solar Terrestrial Relations Observatory and the joint European Space Agency and NASA's Solar and Heliospheric Observatory both watched the great cloud of solar material that erupted off the sun with the flare, an event called a coronal mass ejection. The U.S. National Oceanic and Atmospheric Administrations GOES satellite tracked X-rays from the flare, and other spacecraft measured the effects of the flare as it came toward Earth.

This event was particularly exciting for the IRIS team, as this was the first X-class flare ever observed by IRIS. IRIS launched in June 2013 to zoom in on layers of the sun, called the chromosphere and transition region, through which all the energy and heat of a flare must travel as it forms. This region, overall is called the interface region, has typically been very hard to untangle - but on March 29, IRIS provided scientists with the first detailed view of what happens in this region during a flare.

Coordinated observations are crucial to understanding such eruptions on the sun and their effects on space weather near Earth. Where terrestrial weather watching involves thousands of sensors and innumerable thermometers, solar observations still rely on a mere handful of telescopes.

The instruments on the observatories are planned so that each shows a different aspect of the flare at a different heights off the sun's surface and at different temperatures. Together the observatories can paint a three-dimensional picture of what happens during any given event on the sun.

In this case, the Dunn Solar Telescope helped coordinate the space-based observatories. Lucia Kleint is the principal investigator of a NASA-funded grant at the Bay Area Environmental Research Institute grant to coordinate ground-based and space-based flare observations.

While she and her team were hunting for flares during ten observing days scheduled at Sacramento Peak, they worked with the Hinode and IRIS teams a day in advance to coordinate viewing of the same active region at the same time.

Active regions are often the source of solar eruptions, and this one was showing intense magnetic fields that moved in opposite directions in close proximity - a possible harbinger of a flare. However, researchers do not yet know exactly what conditions will lead to a flare so this was a best guess, not a guarantee.

But the guess paid off. In the space of just a few minutes, the most comprehensive flare data set of all time had been collected. Now scientists are hard at work teasing out a more detailed picture of how a flare starts and peaks - an effort that will help unravel the origins of these little-understood explosions on the sun.

.


Related Links
NASA Telescopes Coordinate Best-Ever Flare Observations
Solar Science News at SpaceDaily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR SCIENCE
Carrington-class CME Narrowly Misses Earth
Huntsville AL (SPX) May 06, 2014
Last month (April 8-11), scientists, government officials, emergency planners and others converged on Boulder, Colorado, for NOAA's Space Weather Workshop-an annual gathering to discuss the perils and probabilities of solar storms. The current solar cycle is weaker than usual, so you might expect a correspondingly low-key meeting. On the contrary, the halls and meeting rooms were abuzz wit ... read more


SOLAR SCIENCE
Corn dwarfed by temperature dip suitable for growing in caves, mines

Bee biodiversity boosts crop yields

Study says pesticides to blame for honeybee colony collapse

Rising CO2 poses significant threat to human nutrition

SOLAR SCIENCE
Magnetic Compass Orientation in Birds Builds Case for Bio-Inspired Sensors

A Lab in Your Pocket

Molecular Foundry Opens the Door to Better Doping of Semiconductor Nanocrystals

New lab-on-a-chip device overcomes miniaturization problems

SOLAR SCIENCE
Malaysia PM urges aircraft changes to prevent another MH370

First Iraqi F-16 Completes First Flight

April Marks New F-35 Flying Records

MH370 puzzle seen leading to out-of-court settlements

SOLAR SCIENCE
Google self-driving car coming around the corner

Two-stroke scooters are 'super-polluters': study

Nissan venture aims for 20% of China electric car market

Toyota posts record annual profit of $17.9 bn

SOLAR SCIENCE
China police say GSK head ordered bribery: state media

Anti-China protest hits Vietnam factories

Swiss likely to turn down world's highest minimum wage

The terrible truth about income inequality

SOLAR SCIENCE
Emerald ash borers were in US long before first detection

China demand for luxury furniture 'decimating rosewood'

Super-charged tropical trees of Borneo vitally important for global carbon cycling

Arctic study sheds light on tree-ring divergence problem

SOLAR SCIENCE
GOES-R Propulsion and System Modules Delivered

Experts demonstrate versatility of Sentinel-1

Kazakhstan's First Earth Observation Satellite to Orbit

How Does Your Garden Glow? NASA's OCO-2 Seeks Answer

SOLAR SCIENCE
Nanoscale heat flow predictions

Harnessing Magnetic Vortices for Making Nanoscale Antennas

New method for measuring the temperature of nanoscale objects discovered

Nanomaterial Outsmarts Ions




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.