GPS News  
TECH SPACE
NASA laser communication payload undergoing integration and testing
by Danny Baird for GSFC News
Greenbelt MD (SPX) Dec 19, 2017


LCRD will pioneer the relay of data through lasers. The mission will demonstrate the feasibility and benefits of laser communications in future networks. Integration and testing, underway now at Goddard, is a crucial step in ensuring these technologies perform in the harsh environment of space.

NASA's Laser Communications Relay Demonstration (LCRD) mission has begun integration and testing at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The mission will demonstrate how a transition from radio to laser communications will exponentially improve the way we connect with astronauts and spacecraft.

"LCRD is a big step in the evolution of space communications," said Dave Israel, LCRD's principal investigator.

"LCRD will demonstrate how laser communications technologies can be applied to significantly enhance the capabilities of NASA's communications infrastructure."

Until recently, NASA spacecraft have wholly depended upon radio communications. Now, NASA is developing cutting-edge laser communications technologies in a paradigm shift from exclusively radio communications to a hybrid of radio and laser.

Laser communications could provide 10 to 100 times better data rates than radio due to higher bandwidth. This means that laser communications can transmit more data at a time than radio, even though both communication types can only travel as fast as the speed of light.

To transmit a one-foot resolution "Google map" of the entire Martian surface, the best radio frequency communications system would take nine years to send all the data. Laser communications could do it in nine weeks. Additionally, laser communications systems take up much less area and weight for the same (or better) data rates than radio systems.

The LCRD mission continues the legacy of the Lunar Laser Communications Demonstration (LLCD), which flew aboard a moon-orbiting spacecraft in 2013. Overall, compared to traditional communications systems on spacecraft today, LLCD used half the mass, 25 percent less power, and still transmitted six times as much data per second.

LCRD will pioneer the relay of data through lasers. The mission will demonstrate the feasibility and benefits of laser communications in future networks. Integration and testing, underway now at Goddard, is a crucial step in ensuring these technologies perform in the harsh environment of space.

"There are three phases to integration and testing leading up to launch," said Glenn Jackson, LCRD payload project manager.

"We're on track to finish the first phase, payload integration, by the end of December. The next phase is to test the entire payload in a flight environment including electromagnetic, acoustic and thermal vacuum testing."

Testing takes place in Goddard's Environmental Test Engineering and Integration Facility. The facility ensures that every instrument is launch-ready, testing them under conditions mimicking launch and space.

A 42-foot tall acoustic test chamber exposes instruments to launch sounds equivalent to 150 decibels, or the volume of a jet take-off from 80 feet away. A thermal vacuum chamber chills the spacecraft to sub-zero temperatures in an artificial vacuum.

"Integration and testing is all about making sure the instruments are speaking to each other, working together," said Bill Potter, project manager for LCRD's integration and testing activity.

"We have a team of about 60 engineers across a number of disciplines making sure the device works as intended in the space environment."

Alongside testing at Goddard, NASA is calibrating Optical Ground Station 2, one of two ground stations that will communicate with LCRD. The station sits atop a mountain in Hawaii to avoid transmission interference from cloud coverage. NASA's Jet Propulsion Laboratory in Pasadena, California, operates LCRD's other ground station at a facility in Table Mountain, California.

LCRD technologies will, once proven, be leveraged aboard two upcoming NASA missions, the Integrated LCRD Low-Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T) and the Optical-to-Orion (O2O) project.

ILLUMA-T will fly aboard the International Space Station as the first demonstration of a fully operational end-to-end laser communications system. It will provide the station with a state-of-the-art laser communications terminal with improved size, weight, power and data rates over comparable radio systems.

NASA plans to fly O2O aboard the Orion spacecraft on the first flight with astronauts, leveraging laser communications for future human spaceflight. Its higher data rates will enable astronauts to video conference with Earth and stream high-definition video of exploratory missions beyond low-Earth orbit.

The recent launch of NASA's last Tracking and Data Relay Satellite closed a chapter in the history of space communications. Future generations of Space Network satellites will incorporate laser technologies developed in this decade. The LCRD mission is an important milestone of that journey.

The LCRD mission is a collaboration between NASA's Space Technology Mission Directorate and NASA's Space Communications and Navigation program office, and is being developed in cooperation with the MIT Lincoln Laboratory. The LCRD payload will be onboard a U.S. Air Force spacecraft as part of the Space Test Program (STP-3) mission and is scheduled to launch in 2019.

TECH SPACE
US has lost dominance in highly intense, ultrafast laser technology to Europe and Asia
Washington DC (SPX) Dec 08, 2017
The U.S. is losing ground in a second laser revolution of highly intense, ultrafast lasers that have broad applications in manufacturing, medicine, and national security, says a new report from the National Academies of Sciences, Engineering, and Medicine. Currently, 80 percent to 90 percent of the high-intensity laser systems are overseas, and all of the highest power research lasers currently ... read more

Related Links
Laser Communications Relay Demonstration
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
How much soil goes get washed down the drain

In food waste fight, Brits turn bread into beer

Archaeologist says fire, not corn, key to prehistoric survival in arid Southwest

Meadows beat out shrubs when it comes to storing carbon

TECH SPACE
Revolutionizing electronics using Kirigami

Single-photon detector can count to 4

Toshiba, Western Digital settle legal battle over chip unit sale

Researchers quantify factors for reducing power semiconductor resistance by two-thirds

TECH SPACE
Draken International to buy surplus South African fighters

Canada to buy 18 used Australian jetsw

Qatar signs $8-bn deal to buy 24 Typhoon fighters from UK

Bell-Boeing awarded contract for materials, support of V-22 Osprey

TECH SPACE
Denmark sets milestone for EV charges

US prosecutors confirm Uber target of criminal probe

Singapore launches electric car-sharing service

Daimler delivers its first all-electric trucks in Europe

TECH SPACE
Britain, China speed up bid to link stock markets

Sweet victory: French candymakers win China legal war

Japan firm says it will pay part of salaries in Bitcoin

China exports surge in November as trade tensions flare

TECH SPACE
African deforestation not as great as feared

Cascading use is also beneficial for wood

New maps show shrinking wilderness being ignored at our peril

Forests are the key to fresh water

TECH SPACE
'Smoke rings' in the ocean spotted from space

Space Mystery Solved by Student Satellite

Scientists share various perspectives on ozone layer recovery

APL Monitoring Instrument Rides into Space

TECH SPACE
Discovery sets new world standard in nano generators

A 100-fold leap to GigaDalton DNA nanotech

New nanowires are just a few atoms thick

Physicists explain metallic conductivity of thin carbon nanotube films









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.