GPS News  
ENERGY TECH
Movement of a liquid droplet generates over 5 volts of electricity
by Staff Writers
Nagoya, Japan (SPX) Feb 14, 2020

A droplet moving on MoS2 generates the voltage as high as 5 V

Energy harvesting, a technology to transform small quantities of naturally occurring energy (e.g. light, heat and vibration) into electricity, is gaining attention as a method to power the Internet of Things (IoT) devices. This technology helps reduce environmental impacts and has a potential to power electronic devices in a stable and long-term manner, unlike batteries that need recharging or replacing.

Researchers at Nagoya University and Kyushu University focused on energy from the tiny movement of liquid and developed a device that generates over 5 volts of electricity directly from the movement of a liquid droplet. This device, made of flexible thin films, generates electricity when drops of water slide down on its upper surface. This technology is expected to be applied to self-powered devices used in liquids, including sensors monitoring the quality of wastewater from factories. Their findings have been published in the journal Nano Energy.

Energy generated from the tiny flow of liquid exists in various environments, such as inside of factory pipes, and in micro-fluid devices, but this kind of energy has not been used effectively so far. It has been shown that a graphene sheet can generate electricity from the liquid movement across its surface. However, its output voltage is limited to about 0.1 volt, which is not enough to drive electronic devices.

The research group, consisting of Nagoya University's Adha Sukma Aji, Ryohei Nishi, and Yutaka Ohno and Kyushu University's Hiroki Ago, has demonstrated that using molybdenum disulfide (MoS2) instead of graphene as the active material in the generator makes it possible to generate over 5 volts of electricity from a liquid droplet.

"To use MoS2 for the generator, it was necessary to form a large-area single-layer MoS2 film on a plastic film. With conventional methods, however, it was difficult to grow MoS2 uniformly on a large-area substrate," says Professor Ohno of the Institute of Materials and Systems for Sustainability at Nagoya University.

"In our study, we succeeded in fabricating this form of MoS2 film by means of chemical vapor deposition using a sapphire substrate with molybdenum oxide (MoO3) and sulphur powders. We also used a polystyrene film as a bearing material for the MoS2 film, so that we were able to transfer the synthesized MoS2 film to the surface of the plastic film quite easily."

The newly developed generator is flexible enough to be installed on the curved inner surface of plumbing, and is thus expected to be used to power IoT devices used in liquids, such as self-powered rain gauges and acid rain monitors, as well as water quality sensors that can generate power from industrial wastewater while monitoring it.

Professor Ohno says, "Our MoS2 nanogenerator is able to harvest energy from multiple forms of liquid motion, including droplets, spraying, and sea waves. From a broader perspective, this device could also be used in applications involving hydrodynamics, such as generating electricity from rainwater and waterfalls."

Research Report: "High output voltage generation of over 5 V from liquid motion on single-layer MoS2"


Related Links
Nagoya University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Quantum technologies: New insights into superconducting processes
Munster, Germany (SPX) Feb 11, 2020
The development of a quantum computer that can solve problems, which classical computers can only solve with great effort or not at all - this is the goal currently being pursued by an ever-growing number of research teams worldwide. The reason: Quantum effects, which originate from the world of the smallest particles and structures, enable many new technological applications. So-called superconductors, which allow for processing information and signals according to the laws of quantum mechanics, ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Food-share apps seeking to help environment

Bumble bee numbers tumble with climate change: study

Destructive locust swarms arrive in Uganda: officials

Yellow glory of Italy's mimosa harvest comes early

ENERGY TECH
Rare-earth element material could produce world's smallest transistors

Artificial atoms create stable qubits for quantum computing

DNA-like material could bring even smaller transistors

Engineers mix and match materials to make new stretchy electronics

ENERGY TECH
Boeing sounds alarm about virus impact on aviation

Singapore Airshow hit by virus fears as 70 exhibitors pull out

Lockheed Martin delivers second KC-130J refueler to France

Boeing delivers first modified F/A-18 Super Hornet to Navy

ENERGY TECH
BMW aims to slash CO2 output by 20% in 2020

Volvo Cars and Chinese owner Geely plan to merge

GM Korea to suspend assembly line as virus hits parts supply

Toyota extends China plant closure over virus

ENERGY TECH
European Parliament ratifies EU-Vietnam trade pact

Novel coronavirus hitting global postal services: UN

China inflation rises as coronavirus disrupts supply chains

Coronavirus to take shine off global luxury business

ENERGY TECH
Amazon deforestation for January hits record

Bolsonaro's Amazon 'dream' is indigenous 'nightmare'

Trees struggle when forests become too small

Pygmy chief arrested for destroying forest in DR Congo park

ENERGY TECH
ECOSTRESS mission sees plants 'waking up' from space

Deep learning accurately forecasts heat waves, cold spells

January 2020 warmest on record: EU climate service

The fingerprints of paddy rice in atmospheric methane concentration dynamics

ENERGY TECH
Deep-sea osmolyte makes biomolecular machines heat-tolerant

Nanobubbles in nanodroplets

New production method for carbon nanotubes gets green light

A quantum breakthrough brings a technique from astronomy to the nano-scale









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.