GPS News  
ENERGY TECH
More flexible nanomaterials can make fuel cell cars cheaper
by Staff Writers
Laurel MD (SPX) Feb 25, 2019

Chao Wang, a Johns Hopkins assistant professor of chemical and biomolecular engineering, in his lab with postdoctoral fellow Lei Wang, another author of the related research article.

A new method of increasing the reactivity of ultrathin nanosheets, just a few atoms thick, can someday make fuel cells for hydrogen cars cheaper, finds a new Johns Hopkins study.

A report of the findings, to be published Feb. 22 in Science, offers promise towards faster, cheaper production of electrical power using fuel cells, but also of bulk chemicals and materials such as hydrogen.

"Every material experiences surface strain due to the breakdown of the material's crystal symmetry at the atomic level. We discovered a way to make these crystals ultrathin, thereby decreasing the distance between atoms and increasing the material's reactivity," says Chao Wang, an assistant professor of chemical and biomolecular engineering at The Johns Hopkins University, and one of the study's corresponding authors.

Strain is, in short, the deformation of any material. For example, when a piece of paper is bent, it is effectively disrupted at the smallest, atomic level; the intricate lattices that hold the paper together are forever changed.

In this study, Wang and colleagues manipulated the strain effect, or distance between atoms, causing the material to change dramatically. By making those lattices incredibly thin, roughly a million times thinner than a strand of human hair, the material becomes much easier to manipulate just like how one piece of paper is easier to bend than a thicker stack of paper.

"We're essentially using force to tune the properties of thin metal sheets that make up electrocatalysts, which are part of the electrodes of fuel cells," says Jeffrey Greeley, professor of chemical engineering at Purdue and another one of the paper's corresponding authors. "The ultimate goal is to test this method on a variety of metals."

"By tuning the materials' thinness, we were able to create more strain, which changes the material's properties, including how molecules are held together. This means you have more freedom to accelerate the reaction you want on the material's surface," explains Wang.

One example of how optimizing reactions can be useful in application is increasing the activity of catalysts used for fuel cell cars. While fuel cells represent a promising technology toward emission-free electrical vehicles, the challenge lies in the expense associated with the precious metal catalysts such as platinum and palladium, limiting its viability to the vast majority of consumers. A more active catalyst for the fuel cells can reduce cost and clear the way for widespread adoption of green, renewable energy.

Wang and colleagues estimate that their new method can increase catalyst activity by 10 to 20 times, using 90 percent less of precious metals than what is currently required to power a fuel cell.

"We hope that our findings can someday aid in the production of cheaper, more efficient fuel cells to make environmentally-friendly cars more accessible for everybody," says Wang.


Related Links
Johns Hopkins University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
The secret life of batteries
Newark DE (SPX) Feb 20, 2019
You probably use batteries every single day, but do you actually understand how they work? Koffi Pierre Yao, a new assistant professor of mechanical engineering at the University of Delaware, is uncovering novel insights about what happens inside the batteries that power our smartphones, laptops, and electric vehicles. He plans to use this knowledge to develop faster-charging batteries that make electric vehicles the go-to automobiles for drivers. Several of today's electric vehicles, such as the ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
FAO warns food supply threatened by declining biodiversity

Cuban cigars hit record sales thanks to increasing Chinese demand

Germany launches push to halve food waste by 2030

Indigenous hunters improve health of food webs in Australian desert

ENERGY TECH
Terahertz wireless makes big strides in paving the way to technological singularity

Spintronics by 'straintronics'

Running an LED in reverse could cool future computers

Penn engineers develop room temperature, two-dimensional platform for quantum technology

ENERGY TECH
Back to black: Cathay says it has ended two years of losses

Bell Boeing signs $10.7M contract for V-22 Osprey radar upgrades

Boeing's EA-18G fighter plane under consideration by Finnish military

U.S., Australia, Britain conduct training aviation exercise in Nevada

ENERGY TECH
EU reaches provisional deal to limit truck emissions

Lyft set for March market debut: report

Porous carbon fiber research one step closer to use in automotive industry

Risk Analysis releases special issue on social science of automated cars

ENERGY TECH
Trump to delay China tariff hike after trade talks 'progress'

BHP posts lower profits, warns of China trade risk

Crunch time as high-level US-China trade talks resume

Trump to greet China's trade negotiator as deadline presses

ENERGY TECH
World's biggest terrestrial carbon sinks are found in young forests

Indonesian firms owe $1.3 bn in forest damage fines: Greenpeace

US Senate votes to expand nationals parks, protected lands

The art and science of Japan's cherry blossom forecast

ENERGY TECH
Earth's atmosphere stretches out to the Moon - and beyond

exactEarth's real-time maritime tracking system now fully-deployed

Astronaut photography benefiting the planet

Van Allen Probes begin final phase exploring Earth's radiation belts

ENERGY TECH
Breakthrough nanoscience discovery made on flight from New York to Jerusalem

Customized mix of materials for three-dimensional micro- and nanostructures

Nano drops a million times smaller than a teardrop explodes 19th century theory

Rice lab adds porous envelope to aluminum plasmonics









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.