GPS News  
NANO TECH
Monitoring the lifecycle of tiny catalyst nanoparticles
by Staff Writers
Bochum, Germany (SPX) May 07, 2019

illustration only

Nanoparticles can be used in many ways as catalysts. To be able to tailor them in such a way that they can catalyse certain reactions selectively and efficiently, researchers need to determine the properties of single particles as precisely as possible. So far, an ensemble of many nanoparticles is analysed. However, the problem of these investigations is that the contributions of different particles interfere, so that the properties of individual particles remain concealed.

Researchers at Ruhr-Universiat Bochum in cooperation with colleagues from University of Duisburg-Essen and Technical University of Munich have developed a novel method in order to observe single nanoparticles before, during and after an electrochemical reaction. They depict the process in the journal "Angewandte Chemie", published on 16 April 2019.

Observing the complete lifecycle
"To comprehensively understand the catalytic activity of a nanoparticle, we have to observe how its structure and composition change - from the pre-catalyst to the active catalyst and eventually all the way to the condition after the reaction," explains Professor Wolfgang Schuhmann, head of the Center for Electrochemical Sciences. "This is why we have developed the particle at the stick."

The researchers grew a catalyst nanoparticle at the tip of a carbon nanoelectrode, subsequently activated it and used it to catalyse an electrochemical reaction. Unlike previous approaches, the novel method made it possible for the team to observe the complete lifecycle of the particle.

Fabricating the particle at the stick
In the first step, the chemists modified the carbon nanoelectrode such that the particle preferably attaches to the tip of the electrode. Subsequently, they dipped the electrode's tip into a solution, which contained the precursor materials for the catalyst. After that, these components assembled automatically, ultimately producing a symmetric particle, in which the constituting elements - the metal cobalt as well as the organic carbonaceous components - were evenly distributed.

The group analysed the shape of the particles by means of transmission electron microscopy. With a special form of X-ray spectroscopy, the researchers determined the elemental distribution within the particle. They repeated these analyses after each step in order to monitor how the particle changed.

Stable nanoassembly of electrode and particle
In the following step, the researchers used heating to trigger the decomposition of the organic compounds and the formation of a carbon matrix with very small embedded cobalt nanoparticles. This is how the actual catalytically active material was formed at the tip of the nanoelectrode.

Afterwards, the chemists used the particle as a catalyst for the production of oxygen from water via electrolysis. The nanoparticle performed excellently and reached turnover rates, which are comparable to industrial electrolysis devices.

"For us it was yet even more important to see that the nanoassembly of electrode and particle was stable enough for a follow-up examination after catalysis," says Wolfgang Schuhmann. The analysis revealed that the particles underwent considerable restructuring during the reaction. That way, the method makes it possible to monitor the changes of a catalyst at very high turnover rates.

The researchers could not only determine the catalytic activity of an individual nanoparticle with their methodology, but they could also monitor its shape and chemical composition throughout the entire lifecycle - completely without the interference of any other particles.

Research paper


Related Links
Ruhr-University Bochum
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


NANO TECH
Fast and selective optical heating for functional nanomagnetic metamaterials
Usurbil, Spain (SPX) Apr 23, 2019
Compared to so-far used global heating schemes, which are slow and energy-costly, light-controlled heating, using optical degrees of freedom such as light wavelength, polarisation, and power, allows to implement local, efficient, and fast heating schemes for the use in nanomagnetic computation or to quantify collective emergent phenomena in artificial spin systems. Single-domain nanoscale magnets interacting via contactless magneto-static interactions are key metamaterials for magnetic data storag ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Canada ups loans to farmers after China blocks canola

When apple trees blossom, worker bees rock

US says glyphosate not carcinogenic, poses environmental risks

Ancient Peruvian microbrewery, sour ale helps explain longevity of the Wari empire

NANO TECH
HKUST physicist contributes to new record of quantum memory efficiency

Bridge over coupled waters: Scientists 3D-print all-liquid 'lab on a chip'

Nanocomponent is a quantum leap for Danish physicists

Semiconductor scientists discover effect that was thought impossible

NANO TECH
Heathrow campaigners lose court case against expansion

Lockheed awarded $1.1B contract for F-35 support

Boeing awarded $5.7B for KC-46 Pegasus combat capability work

State Department approves new deal with Taiwan for F-16s

NANO TECH
GM reports lower sales in China, North America

Judge rules Lyft must follow New York rules for driver minimum wage

Uber hit with Australia class action ahead of stock listing

Tesla CEO Musk strikes deal with market regulators over tweets

NANO TECH
UK's May sacks defence minister Williamson over Huawei leak

US, Chinese negotiators hold 'productive' trade talks

Chinese negotiators still eye US trip despite Trump tariffs

Pence: tariffs part of enforcement in a US-China trade deal

NANO TECH
Attacks on Brazil's ecological paradises threaten biodiversity

19 arrested in Brazil raids over illegal Amazon logging

Tropical forest the size of England destroyed in 2018: report

Illegal logging in Brazil turns Amazon into a powder keg

NANO TECH
NASA Instrument to More Accurately Measure Ozone Discovered by "Accident"

Greek researchers enlist EU satellite against Aegean sea litter

Arianespace to launch "SAR" satellite StriX-a aboard Vega for Japanese startup company Synspective

Geomagnetic jerks finally reproduced and explained

NANO TECH
Fast and selective optical heating for functional nanomagnetic metamaterials

2D gold quantum dots are atomically tunable with nanotubes

Harnessing microorganisms for smart microsystems

AD alloyed nanoantennas for temperature-feedback identification of viruses and explosives









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.