GPS News  
SPACE MEDICINE
Microgravity changes brain connectivity
by Staff Writers
Moscow, Russia (SPX) Aug 20, 2019

file image

An international team of Russian and Belgian researchers, including scientists from HSE University, has found out that space travel has a significant impact on the brain: they discovered that cosmonauts demonstrate changes in brain connectivity related to perception and movement.

Some areas, such as regions in the insular and parietal cortices, work more synchronously with other brain areas after the space flight. On the other hand, connectivity of some other regions, such as the cerebellum and vestibular nuclei, decreases. The results of the study were published in Frontiers in Physiology.

While Roscosmos is discussing future manned flights to Mars, NASA plans to open the International Space Station for commercial tourism, and SpaceX is testing its Starship Mars prototype, scientists are seriously concerned about the impact of a prolonged stay in space on the human body.

During flights, astronauts are continuously exposed to weightlessness, which requires adaptation and causes changes within the body. Life on colonised planets and satellites - humanity's likely future - will demand special conditions to become safe for our body. While the effects of weightlessness on bones, muscles and the vestibular system are well known, how the human brain copes with microgravity has yet to be fully examined. Recent studies using neuroimaging show that space travel does not leave the brain unaffected.

An international team which included scientists from the HSE University, RAS Institute of Biomedical Problems, Federal Center of Treatment and Rehabilitation, Lomonosov Moscow State University, Gagarin Cosmonaut Training Centre and several Belgian research organisations used functional magnetic resonance imaging (fMRI) to measure functional brain connectivity in a group of eleven cosmonauts in a groundbreaking research project. It turned out that adaptation to microgravity and related changes in motor activity can cause the modifications of functional connectivity between the brain areas.

The researchers performed brain fMRIs on the cosmonauts before and after space missions lasting on average six months and then compared their data to those of healthy volunteers who had stayed on Earth. The researchers were looking for changes in connectivity between brain areas underlying sensorimotor functions such as movement and perception of body position. These brain areas were activated using gait-imitating plantar stimulation.

The researchers discovered changes in the cosmonauts' brain connections. To compensate for the lack of information from the organs of balance, which cannot provide reliable information in micrograviry, the brain develops an auxiliary system of somatosensory control, with increased reliance on visual and tactile feedback instead of vestibular input.

On the one hand, decreased connectivity between the cerebral cortex and vestibular nuclei has been revealed. Under Earth's gravity, vestibular nuclei are responsible for processing signals coming from the vestibular system. But in space, according to the researchers, the brain may downweight the activity of these structures to avoid conflicting information about the environment. They also found that after space flight, the connections of the cerebellum and a number of other structures, particularly those responsible for movement, decrease.

On the other hand, fMRI showed increased connections between the insular cortex in the left and right hemispheres, as well as between the insular cortex and other areas of the brain. Insular lobes, among other things, are responsible for the integration of signals coming from different sensor systems. Similar functions are performed by the area of parietal cortex in the right supramarginal gyrus, which also demonstrated increased connectivity with other areas of the brain after the flight.

'It's an interesting fact that connectivity increase between the right supramarginal gyrus and the left insular cortex was greater among those cosmonauts who experienced a less comfortable initial adaptation process on the space station (those who experienced vertigo, the illusion of body position, etc.),' says Ekaterina Pechenkova, Leading Research Fellow at the HSE Laboratory for Cognitive Research.

The researchers believe that this kind of information will eventually help to better understand why it takes different lengths of time for different people to adapt to the conditions of space flight, and will help to develop more effective individual training programmes for space travelers.

Research paper


Related Links
National Research University Higher School of Economics
Space Medicine Technology and Systems


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SPACE MEDICINE
CRISPR-Cas can now modify hundreds, of genes at once
Washington (UPI) Aug 14, 2019
Scientists have supercharged CRISPR-Cas technology. According to a new study, the method can now be used to modify dozens, even hundreds, of genes. Over the last decade, scientists have been perfecting the gene-editing method known as CRISPR-Cas. But even as the technique became more precise, it remained limited in scale. Until now, scientists were only able to use CRISPR-Cas to modify just a few genes at a time. Most of the time, scientists were only able to edit one gene at a time. Now ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
Study details links between coca, conflict, deforestation in Colombia

The 'gift' of Tunisia's delicate date palm drink

Ancient pigs endured a complete genomic turnover after they arrived in Europe

Can we eat meat and still tame global warming?

SPACE MEDICINE
New perovskite material shows early promise as an alternative to silicon

Newfound superconductor material could be the 'silicon of quantum computers'

Quantum light sources pave the way for optical circuits

Researchers produce electricity by flowing water over extremely thin layers of metal

SPACE MEDICINE
Cathay Pacific's torrid week ends with shock CEO resignation

N.H. Air National Guard base gets its first KC-46A tanker

Air Force grounds 123 C-130s due to 'atypical cracks'

South Korea approved to buy 12 MH-60R Seahawk helicopters

SPACE MEDICINE
Uber shares skid as quarterly loss soars

Lyft gets boost from improving outlook

Lyft suspends e-bikes after battery fires

Five things to know about VW's 'dieselgate' scandal

SPACE MEDICINE
Greenland cold-shoulders Trump's reported buyer's wish

Consumers supporting US economy amid manufacturing slump

The Turkish army pension fund taking over British Steel

Trump threatens to pull US from WTO 'if we have to'

SPACE MEDICINE
Norway blocks 30 mn-euro deforestation subsidy to Brazil

Mexican start-up fights air pollution with artificial trees

Stanford-led study gauges trees' and carbon sequestration

African forest elephant helps increase biomass and carbon storage

SPACE MEDICINE
Making microbes that transform greenhouse gases

Using lasers to visualize molecular mysteries in our atmosphere

Making sense of remote sensing data

NASA's Spacecraft Atmosphere Monitor Goes to Work Aboard the International Space Station

SPACE MEDICINE
DNA origami joins forces with molecular motors to build nanoscale machines

DARPA Announces Microsystems Exploration Program









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.