Subscribe free to our newsletters via your
. GPS News .




ROBO SPACE
Microbot muscles: Chains of particles assemble and flex
by Staff Writers
Ann Arbor MI (SPX) Nov 11, 2014


File image.

In a step toward robots smaller than a grain of sand, University of Michigan researchers have shown how chains of self-assembling particles could serve as electrically activated muscles in the tiny machines.

So-called microbots would be handy in many areas, particularly medicine and manufacturing. But several challenges lie between current technologies and science fiction possibilities. Two of the big ones are building the 'bots and making them mobile.

"We are inspired by ideas of microscopic robots," said Michael Solomon, a professor of chemical engineering. "They could work together and go places that have never been possible before."

Solomon and his group demonstrated that some gold plating and an alternating electric field can help oblong particles form chains that extend by roughly 36 percent when the electric field is on.

"What's really important in the field of nanotechnology right now is not just assembling into structures, but assembling into structures that can change or shape-shift," said Sharon Glotzer, the Stuart W. Churchill Professor of Chemical Engineering, whose team developed computer simulations that helped explain how the chains grew and operated.

The innovation that led to the shape-shifting, said Aayush Shah, a doctoral student in Solomon's group, is the addition of the electric field to control the behavior of the particles.

"The particles are like children in a playground," Shah said. "They do interesting things on their own, but it takes a headmaster to make them do interesting things together."

The team started with particles similar to those found in paint, with diameters of about a hundredth the width of a strand of hair. They stretched these particles into football shapes and coated one side of each football with gold.

The gilded halves attracted one another in slightly salty water--ideally about half the salt concentration in the sports drink Powerade. The more salt in the water, the stronger the attraction.

Left to their own devices, the particles formed short chains of overlapping pairs, averaging around 50 or 60 particles to a chain. When exposed to an alternating electric field, the chains seemed to add new particles indefinitely. But the real excitement was in the way that the chains stretched.

"We want them to work like little muscles," Glotzer said. "You could imagine many of these fibers lining up with the field and producing locomotion by expanding and contracting."

While the force generated by the fibers is about 1,000 times weaker than human muscle tissue per unit area, it may be enough for microbots.

"If we can get the chains to swarm together, we can get them to lift loads, move around, do things that biological muscles do," Solomon said.

Minuscule, muscled robots may be many years away, but more immediately, the particles could enable electronics that rewire on demand.

"These chains are essentially wires, so you could assemble them into a circuit for reconfigurable electronics," said Solomon.

The team is still investigating how the phenomenon works.

"We don't fully understand why the chains extend, but we have some ideas," said Benjamin Schultz, a graduate student in Glotzer's group.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Michigan
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ROBO SPACE
Amazon debuts Siri-style virtual assistant in speaker
San Francisco (AFP) Nov 06, 2014
Internet retail titan Amazon on Thursday introduced a home virtual assistant always at the ready to answer questions, fetch news, play music or help with to-do lists. Cloud-based brains referred to as "Alexa" were built into Echo speakers and were seen as a challenge to "Siri" virtual assistants in Apple's coveted mobile devices. Echo became available on an invitation-only basis at a pri ... read more


ROBO SPACE
Anti-organic: Why do some farmers resist profitable change?

BAM-FX offers agricultural solutions across seven states

Stolen or farmed, Greek mountain herbs take off

Using wheat as an energy source for beef cattle

ROBO SPACE
Heat transfer sets the noise floor for ultrasensitive electronics

'Direct writing' of diamond patterns from graphite a potential technological leap

Clearing a path for electrons in polymers: Closing in on the speed limits

Saving lots of computing capacity with a new algorithm

ROBO SPACE
NASA tests airplane with flexible wings in cooperation with U.S. Air Force

Australia seeking more C-17A airlifters

U.S. Air Force orders spare engines from Rolls-Royce

Peru receives first Korean-made pilot trainer planes

ROBO SPACE
QUT leading the charge for panel-powered car

Dongfeng, Huawei partner for Internet-enabled cars

Funding for Uber could push value past $30 bn: report

Electric car revs to world record in Switzerland

ROBO SPACE
Taiwan alarmed by China-Seoul free trade pact

'Milestone' Hong Kong, Shanghai stock link to launch

China, Myanmar ink $7.8 bn in deals: state media

Turkey could scrap controversial Chinese missile purchase: sources

ROBO SPACE
Early New Zealand population initiated rapid forest transition

NEIKER fells pine trees to study their wind resistance

Gardeners of Madagascar rainforest at risk

Groundwater patches play important role in forest health, water quality

ROBO SPACE
NASA Lining up ICESat-2's Laser-catching Telescope

Five years of soil moisture, ocean salinity and beyond

Goodbye to Rainy Days for US, Japan's First Rain Radar in Space

ADS boosts EO portfolio with the addition of DMC Data

ROBO SPACE
On-demand conductivity for graphene nanoribbons

Measuring nano-vibrations

Live Images from the Nano-cosmos

Outsmarting Thermodynamics in Self-assembly of Nanostructures




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.