GPS News  
DEEP IMPACT
Meteorite Sprinkles On Fresh Baked Earth And Mars

The researchers believe that on Mars, the meteorite bombardment would have turned a warm wet world into a cold and arid one.
by Staff Writers
London UK (SPX) Apr 13, 2011
Bombardments of 'micro-meteorites' on Earth and Mars four billion years ago may have caused the planets' climates to cool dramatically, hampering their ability to support life, according to research published in the journal Geochimica et Cosmochimica Acta.

Scientists from Imperial College London studied the effects of the Late Heavy Bombardment (LHB), a period of time in the early solar system when meteorite showers lasting around 100 million years barraged Earth and Mars. This bombardment discharged sulphur dioxide into the upper atmospheres of both planets and the researchers' analysis suggests that this may have had a catastrophic impact on their environments.

Micro-meteorites come from the rocky asteroid belt between Mars and Jupiter. These space rocks, which are the size of sugar grains, get dragged by gravity towards Earth and Mars. As they enter the planets' upper atmospheres, they heat up to temperatures of approximately 1000 degrees Celsius, releasing gases including sulphur dioxide. Sulphur dioxide in the atmosphere forms aerosols, consisting of solid and liquid particles, which deflect sunlight away from the surface, making planets cooler.

The authors of the new study have calculated that showers of micro-meteorites delivered approximately 20 million tonnes of sulphur dioxide each year into the upper atmosphere of Earth during the LHB. The team deduced that on Mars, these micro-meteorites delivered up to half a million tonnes of sulphur dioxide each year for the same period of time.

Professor Mark Sephton, an author of the study from the Department of Earth Science and Engineering at Imperial College London, says: "Far less of the Sun's energy was reaching Earth 4 billion years ago, which would have made it hard for early life to emerge. Recently denied of its protective magnetic field and constantly subjected to large meteorite impacts, Mars was also starting to lose its greenhouse gases at this time, causing global cooling. The influx of sulphur dioxide into the Mars's atmosphere would have dealt a further blow to a planet already on the ropes, making conditions for life even more of a challenge."

The team say that such a large influx of sulphur dioxide into early Earth's atmosphere had the same cooling effect on the climate as if there was an eruption of the size of the 1991 Mount Pinatubo eruption every year for 100 million years. The 1991 Mount Pinatubo eruption released 17 million tonnes of gases, including sulphur dioxide, into the atmosphere, preventing 10 percent of sunlight from reaching Earth and cooling the planet by half a degree Celsius.

The scientists say that the environmental consequences of sulphur dioxide in Earth's atmosphere could have been disastrous. At this time, the Sun's energy was 30 percent weaker than it is today, meaning less energy was reaching the surface.

The team believe that a weaker Sun, combined with increasing levels of sulphur dioxide from micro-meteorites, could have plunged Earth into an Arctic winter, lasting millions of years and making conditions for primitive microbial life extremely difficult.On Mars during the LHB, the scientists predict that the cooling effects of sulphur dioxide on the red planet's atmosphere would have been the equivalent of an eruption 1/34th the size of Mount Pinatubo occurring every year for 100 million years.

On Mars, being further away from the Sun, the scientists suggest the environmental consequences would have been even more dramatic. High levels of sulphur dioxide would cause temperatures to plunge and water on the surface, in the form of lakes and rivers, to disappear, turning a warm wet world into a cold arid one.

Dr Richard Court, who is lead author of the study from the Department of Earth Science and Engineering at Imperial College London, adds: "These sugar-grain sized meteorites are left over material from the construction of our early solar system, helping to build rocky planets such as Earth and Mars. Our study is helping us to see how these tiny space rocks could also bring environmental devastation on a global scale to early Earth and Mars."

The researchers came to their conclusions by simulating what happens to micro-meteorites as they entered the atmosphere, using a technique called flash pyrolysis to heat rock fragments that were identical to micro-meteorites to 1000 degrees Celsius. They then used infrared spectroscopy to measure the amount of sulphur dioxide released from these rocks.

The team then used their results and calculations of meteorite in-fall rates during the LHB to determine how much sulphur dioxide was delivered to Earth and Mars from micro-meteorites.

This study is a continuation of earlier work by the team who have discovered that meteorites are not the source of the present-day methane in the atmosphere of Mars, raising hopes that the methane is being generated by life on the red planet. Their work has also shown that meteorites delivered other important gases to Earth during its early history that would have made it more habitable. In the future, the team will assess the contributions gases from meteorites on planets outside of the solar system.

The research was funded by the Science and Technology Facilities Council.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Imperial College London
Asteroid and Comet Impact Danger To Earth - News and Science



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


DEEP IMPACT
Scientists Find New Type of Mineral in Historic Meteorite
Houston TX (SPX) Apr 13, 2011
NASA and co-researchers from the United States, South Korea and Japan have found a new mineral named "Wassonite" in one of the most historically significant meteorites recovered in Antarctica in December 1969. The new mineral was discovered within the meteorite officially designated Yamato 691 enstatite chondrite. The meteorite was discovered the same year as other landmark meteorites Alle ... read more







DEEP IMPACT
Five held in China steamed bun probe

Invasive Plant Threat Depends On Spatial

New Genetic Study Helps To Solve Darwin's Mystery About The Ancient Evolution Of Flowering Plants

US Congress set to cut overseas food aid

DEEP IMPACT
ASML quarterly profits soar, record year expected

Motorola Solutions, Huawei settle IP dispute

Technique For Letting Brain Talk To Computers Now Tunes In Speech

Japan's stalled chip sector 'to cost $470bn'

DEEP IMPACT
Ceramic Coatings May Protect Jet Engines From Volcanic Ash

Airline readiness for volcanic ash clouds tested

S. Korea preferred bid for Indonesian jet contract

Chinese airlines sign deal to buy 35 Embraer jets

DEEP IMPACT
Japan economy, Toyota feel effects of disaster

IBM driver tool predicts traffic jams

MG roars back with first new car for 16 years

Toyota to halt production at five European plants

DEEP IMPACT
Brazil seals new deals with China

China, Spain firms sign $1.4 billion in deals

US-China trade debate troubling, says RBA governor

Taiwan's Foxconn mulls $12 bn investment in Brazil

DEEP IMPACT
Indonesia's carbon-rich wetlands essential

NGO sues to save forest for Paraguay natives

Low Fertilizer Use Drives Deforestation In West Africa

Slash-and-burn threatens African forests

DEEP IMPACT
Joint Polar Satellite System Program And The US Budget

Pulling Back The Sheets

Arctic Ice Gets A Check Up

Arctic Ozone Loss

DEEP IMPACT
German cabinet approves CO2 storage bill

Europe pushes plans to hike diesel, coal taxation

Health Effects Of Amines And Their Derivatives

New Method For Preparation Of High-Energy Carbon-Carbon Double Bonds


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement