GPS News  
STELLAR CHEMISTRY
Merging neutron stars
by Staff Writers
Bonn, Germany (SPX) Feb 15, 2019

Simulation of merging neutron stars calculated with supercomputers. Different colors show the mass density and the temperature some time after the merger has taken place and shortly before the object collapses to a black hole. Quarks are expected to form where the temperature and density are higher.

The option to measure the gravitational waves of two merging neutron stars has offered the chance to answer some of the fundamental questions about the structure of matter. At the extremely high temperatures and densities in the merger scientists conjecture a phase-transition where neutrons dissolve into their constituents: quarks and gluons. In the current issue of Physical Review Letters, two international research groups report on their calculations of what the signature of such a phase transition in a gravitational wave would look like.

Quarks, the smallest building-blocks of matter, never appear alone in nature. They are always tightly bound inside the protons and neutrons. However, neutron stars, weighing as much as the Sun, but being just the size of a city like Frankfurt, possess a core so dense that a transition from neutron matter to quark matter may occur.

Physicists refer to this process as a phase transition, similar to the liquid-vapor transition in water. In particular, such a phase transition is in principle possible when merging neutron stars form a very massive meta-stable object with densities exceeding that of atomic nuclei and with temperatures 10,000 times higher than in the Sun's core.

The measurement of gravitational waves emitted by merging neutron stars could serve as a messenger of possible phase transitions in outer space. The phase transition should leave a characteristic signature in the gravitational-wave signal.

The research groups from Frankfurt, Darmstadt and Ohio as well as from Darmstadt and Wroclaw (used modern supercomputers to calculate what this signature could look like. For this purpose, they used different theoretical models of the phase transition.

In case a phase transition takes place more after the actual merger, small amounts of quarks will gradually appear throughout the merged object.

"With aid of the Einstein equations, we were able to show for the first time that this subtle change in the structure will produce a deviation in the gravitational-wave signal until the newly formed massive neutron star collapses under its own weight to form a black hole," explains Luciano Rezzolla, who is a professor for theoretical astrophysics at the Goethe University.

In the computer models of Dr. Andreas Bauswein from GSI Helmholtzzentrum fur Schwerionenforschung in Darmstadt a phase transition already happens directly after the merger - a core of quark matter forms in the interior of the central object. "We succeeded to show that in this case there will be a distinct shift in the frequency of the gravitational wave signal," says Bauswein.

"Thus, we identified a measurable criterion for a phase transition in gravitational waves of neutron star mergers in the future."

Not all of the details of the gravitational-wave signal are measurable with current detectors yet. However, they will become observable both with the next generation of detectors, as well as with a merger event relatively close to us.

A complementary approach to answer the questions about quark matter is offered by two experiments: By colliding heavy ions at the existing HADES setup at GSI and at the future CBM detector at the Facility for Antiproton and Ion Research (FAIR), which is currently under construction at GSI, compressed nuclear matter will be produced.

In the collisions, it might be possible to create temperatures and densities that are similar to those in a neutron-star merger. Both methods give new insights into the occurrence of phase transitions in nuclear matter and thus into its fundamental properties.

Research paper


Related Links
Helmholtz Association
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Liberal sprinkling of salt discovered around a young star
Charlottesville VA (SPX) Feb 08, 2019
A team of astronomers and chemists using the Atacama Large Millimeter/submillimeter Array (ALMA) has detected the chemical fingerprints of sodium chloride (NaCl) and other similar salty compounds emanating from the dusty disk surrounding Orion Source I, a massive, young star in a dusty cloud behind the Orion Nebula. "It's amazing we're seeing these molecules at all," said Adam Ginsburg, a Jansky Fellow of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, and lead author of a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA is Everywhere: Farming Tech with Roots in Space

Tracking pollen with quantum dots

China imposes anti-dumping tariffs on Brazilian chicken

Prickly pears: 'humble' cactus brings hope to Algeria

STELLAR CHEMISTRY
Spintronics by 'straintronics'

Penn engineers develop room temperature, two-dimensional platform for quantum technology

Quantum strangeness gives rise to new electronics

Boosting solid state chemical reactions

STELLAR CHEMISTRY
Raytheon nets $88.4M for Hornet, Growler electronic upgrades

Spain joins France, Germany on new combat fighter

Bell awarded $240M for 12 Viper helicopters for Bahrain

Airbnb eyes the sky with hire of aviation exec

STELLAR CHEMISTRY
Teaching self-driving cars to predict pedestrian movement

Risk Analysis releases special issue on social science of automated cars

Giving keener 'electric eyesight' to autonomous vehicles

UN eyes rule for automatic emergency braking systems in new cars

STELLAR CHEMISTRY
Chinese exports unexpectedly perk up in January

Trump tariffs bring in additional $9 bn in first quarter

Hong Kong's super rich took a $20 bn beating in 2018: Forbes

Japan's Toshiba cuts profit outlook again

STELLAR CHEMISTRY
US Senate votes to expand nationals parks, protected lands

The art and science of Japan's cherry blossom forecast

How does the Amazon rain forest cope with drought?

Innovative GEDI Instrument Now Gathering Forest Data

STELLAR CHEMISTRY
exactEarth's real-time maritime tracking system now fully-deployed

Swarm helps pinpoint new magnetic north for smartphones

In Solar System's Symphony, Earth's Magnetic Field Drops the Beat

Van Allen Probes begin final phase exploring Earth's radiation belts

STELLAR CHEMISTRY
Customized mix of materials for three-dimensional micro- and nanostructures

Nano drops a million times smaller than a teardrop explodes 19th century theory

Rice lab adds porous envelope to aluminum plasmonics

Research details sticky situations at the nanoscale









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.