GPS News  
Mechanical Engineer Aims To Improve Detection Of Nuclear Smuggling Activity

Los Alamos National Laboratory uses the computer model David Morton and a former graduate student developed to help prioritize radiation sensor installations in Russia and nearby countries, which have insufficient security for stores of nuclear weapons material and radioactive material. Morton is developing a related computer model to guide other decisions, such as the capital-improvement projects to consider at a Texas nuclear power plant, and how best to expand wildlife areas.
by Staff Writers
Austin TX (SPX) Nov 29, 2007
A professor at The University of Texas at Austin has received $1.9 million to expand a computer model that is already helping guide national decisions about placement of devices to detect nuclear smuggling attempts. The U.S. Department of Homeland Security provided the funds to improve the design of networks of sensors to detect smuggling in Russia and other countries of the former Soviet Union that have insufficient security for their stores of nuclear weapons material and radioactive material.

Nearly 300 nuclear smuggling attempts have been reported to the United Nations from these countries since 1995.

In the past four years, Los Alamos National Laboratory has used the basic nuclear smuggling model developed by Dr. David Morton and former graduate student Feng Pan to help combat this trend by providing guidance for national decisions on radiation detector placement in Russia and nearby countries.

"Russia's got the biggest border of any country on the planet, making it highly unlikely the country could seal its borders," said Morton. "So the real issue becomes: given the limited resources and the fact that radiation detectors can cost upwards of $1 million to set up, can we provide a computer tool that locates the detectors optimally?"

The United States has provided more than $100 million to place radiation detectors at Moscow's main airport and other sites where smugglers could escape with material for preparing nuclear weapons or dirty bombs. Still, hundreds more potential nuclear smuggling sites in Russia and around the world could use radiation detectors. The computer model seeks to prioritize decisions on sites to outfit based on: " routes smugglers typically take to reach buyers willing to pay millions for their stash, " nuclear and radioactive materials most likely to be smuggled and " methods smugglers will use to conceal their dangerous cargo.

The computer model in use at Los Alamos considers smugglers' passage through pedestrian, automobile, rail, airport and sea crossings. Los Alamos also uses Morton's nuclear smuggling model for detective work when a smuggler is captured. The goal is to go beyond speculation about the source of the material and other details.

"It's common for a smuggler to transport really small amounts of nuclear material," said Morton, who holds an Engineering Foundation Endowed Professorship. "The danger is that this nuclear material actually represents a larger mass at risk of being stolen if a buyer likes the original sample provided."

With the $1.9 million from the Domestic Nuclear Detection Office of the Department of Homeland Security, Morton and fellow mechanical engineering faculty will spend five years expanding his computer model for placing radiation detectors with detailed information about smuggling scenarios and models of smugglers' strategic behavior. Assistant Professor Erich Schneider will build the computer model's description of the nuclear material being smuggled and of how the radiation detectors recognize concealed material. Associate Professor Elmira Popova will provide probability calculations for the computer model, and run computer simulations to test it.

In other work, Morton is applying $270,000 from the National Science Foundation to develop a related computer model approach to guide various decisions at other organizations. For example, he and Popova are helping the South Texas Project prioritize capital-improvement projects at the nuclear power plant in Bay City, Texas.

Morton is also working with Integrative Biology and Philosophy Professor Sahotra Sarkar at The University of Texas at Austin to test a computer model for decisions about creating conservation area networks to protect wildlife. For example, the modeling helps decide specific areas to protect in the Balcones Canyonlands. The additions expand existing wildlife refuges and preserves in the Austin area to protect endangered birds.

"From nuclear smugglers to Golden-cheeked Warblers, these computer models have all sorts of applications to making important decisions in the face of significant uncertainties," Morton said.

Related Links
University of Texas at Austin
Learn about nuclear weapons doctrine and defense at SpaceWar.com
Learn about missile defense at SpaceWar.com
All about missiles at SpaceWar.com
Learn about the Superpowers of the 21st Century at SpaceWar.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Highly radioactive material missing in DR Congo
Kinshasa (AFP) Nov 14, 2007
Some 15 tonnes of highly radioactive material have disappeared after being seized last month in southeastern Democratic Republic of Congo, the country's environment minister said Wednesday.







  • Announcement Of Opportunity For Sounding Rocket And Balloon Flights
  • China to order up to 150 Airbus jets during Sarkozy visit: report
  • Time Magazine Recognizes The X-48B
  • Virgin to offer carbon offsets alongside drinks and perfume

  • NIST Measures Performance Of Auto Crash Warning Systems
  • German cars world champs, except in Germany
  • Honda Debuts All-New FCX Clarity Advanced Fuel Cell Vehicle
  • 300 Miles Per Gallon! Aptera Motors Unveils Ultra Efficient All-Electric and Plug-In Hybrid

  • Boeing Demonstrates Maturity Of TSAT Encryption System
  • Northrop Grumman Qualifies Extended Data Rate Software For AEHF Military Communications Satellite
  • Lockheed Martin Delivers Key Satellite Hardware For New Military Communications System
  • Boeing Demonstrates FAB-T Multi-terminal Link Capability To USAF

  • US, Russians hold missile defense talks: Pentagon
  • Ex-Czech PM calls US anti-missile plan 'provocation': report
  • US 'listens' to Russian concern on missile defence: Putin
  • Russia dismisses US offers on missile defence: reports

  • Scientists to discuss ways to 'climate-proof' crops
  • Noah's Flood Kick-Started European Farming
  • Greenpeace slams 'unsustainable' new tuna quota
  • FAO report urges paying poor farmers to be green

  • NORTHCOM Experience Lends Lessons To Bangladesh Relief
  • US marines assist stepped up relief effort in Bangladesh
  • LSU Helps Bangladesh Save Lives By Providing Storm Surge Models 24 Hours In Advance Of Cyclone Sidr
  • Tsunami-Recording In The Deep Sea

  • 40th Anniversary Of Australia's First Satellite
  • Blue Dye Could Hold The Key To Super Processing Power
  • ESA And Inmarsat Sign Innovative Alphasat Satellite Contract
  • Dude, Big Screen TVs, Flexible Electronics And Surfboards Made From Same New Material

  • Humanoid teaches dentists to feel people's pain: researchers
  • Japan looks at everyday use of robots
  • New Japanese lightweight robot on wheels can talk
  • Can A Robot Find A Rock. Interview With David Wettergreen: Part IV

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement