GPS News  
TIME AND SPACE
Measuring the expansion of the universe: Researchers focus on velocity
by Staff Writers
Copenhagen, Denmark (SPX) Nov 06, 2020

In both observations the redshift is measured from the clarity of the supernova. But in observation 2 (Galaxy 2) the measurement is made on the ejecta from the explosion. The measurements on Galaxy 2 become more uncertain since we don't know exactly in each case how fast the explosion ejects the material. Never the less it is still made in order to obtain as much data as possible.

Ever since the astronomer Edwin Hubble demonstrated that the further apart two galaxies are, the faster they move away from each other, researchers have measured the expansion rate of the Universe (the Hubble constant) and the history of this expansion. Recently, a new puzzle has emerged, as there seems to be a discrepancy between measurements of this expansion using radiation in the early Universe and using nearby objects. Researchers from the Cosmic Dawn Center, at the Niels Bohr Institute, University of Copenhagen, have now contributed to this debate by focusing on velocity measurements. The result has been published in Astrophysical Journal.

The researchers at the Cosmic Dawn Center found that the measurements of velocity used for determining the expansion rate of the Universe may not be reliable. As stated in the publication, this doesn't resolve the discrepancies, but rather hints at an additional inconsistency in the composition of the Universe.

Measuring the expansion rate of the Universe
Currently, astronomers measure the expansion of the Universe using two very different techniques. One is based on measuring the relationship between distance and velocity of nearby galaxies, while the other stems from studying the background radiation from the very early universe. Surprisingly, these two approaches currently find different expansion rates.

If this discrepancy is real, a new and rather dramatic reinterpretation of the development of the Universe will be the consequence. However, it is also possible that the difference in the Hubble constant could be from incorrect measurements. It is difficult to measure distances in the Universe, so many studies have focused on improving and recalibrating distance measurements. But in spite of this, over the last 4 years the disagreement has not been resolved.

The velocity of the remote galaxies is easy to measure - or so we thought
In the recent scientific article, the researchers from the Cosmic Dawn Center now attempt to shine light on a related problem: the measurement of velocity. Depending on the velocity with which a remote object moves away from us, its light shifts to redder colors. With this so-called redshift it is possible to measure the velocity from a spectrum of a remote galaxy. Unlike measurements of distance, until now it was assumed that velocities were relatively easy to measure.

However, when the researchers recently examined distance and velocity measurements from more than 1000 supernovae (exploding stars) collected during the last 25 years, they found a surprising discrepancy in their results. Albert Sneppen, Masters student at the Niels Bohr Institute explains: "We've always believed that measuring velocities was fairly straightforward and precise, but it turns out that we are actually dealing with two types of redshifts".

The first type, measuring the velocity with which the host-galaxy moves away from us, is considered the most reliable. The other type of redshift measures instead the velocity of matter ejected from the exploding star inside the galaxy. Or, more precisely, the matter from the supernova moving towards us with a few percent of the velocity of light (illustration 1).

After compensating for this extra movement the redshift - and velocity - of the host galaxy can be determined. But this compensation requires a precise model for the explosion. The researchers were able to determine that the results from these two different techniques result in two different expansion histories for the Universe, and therefore two different compositions as well.

Are things "broken in an interesting way?"
So, does this mean that the measurements of the early Universe and newer measurements are ultimately a question of imprecise measurements of velocity? Probably not, says Bidisha Sen, one the authors of the article.

"Even if we only use the more reliable redshifts, the supernova measurements not only continue to disagree with the Hubble constant measured from the early Universe - they also hint at a more general discrepancy regarding the composition of the Universe", she says.

Associate professor at the Niels Bohr Institute Charles Steinhardt, is intrigued by these new results. "If we are actually dealing with two disagreements, it means that our current model would be "broken in an interesting way", he says. "In order to solve two problems, one regarding the composition of the Universe and one regarding the expansion rate of the Universe, rather different physical explanations are required than if we only want to explain a single discrepancy in the expansion rate".

The Scientific work continues at the Nordic Optical Telescope
With the Nordic Optical Telescope in Gran Canaria the researchers are now acquiring new redshifts from the host galaxies. When they compare these results with the supernova based redshifts, they will be able to see if the two techniques remain different. "We have learned that these sensitive measurements require precise measurements of velocity, and these will be attainable with fresh observations", Steinhardt explains.

Research paper


Related Links
University Of Copenhagen
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Scientists carry out first space-based measurement of neutron lifetime
Durham UK (SPX) Jun 12, 2020
Scientists have found a way of measuring neutron lifetime from space for the first time - a discovery that could teach us more about the early universe. Knowing the lifetime of neutrons is key to understanding the formation of elements after the Big Bang that formed the universe 13.8 billion years ago. Scientists at Durham University, UK, and Johns Hopkins Applied Physics Laboratory, USA, used data from NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecra ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Satellite remote sensing integration with Jain Logic makes growers more productive

What digital revolution? Hundreds of millions of farmers still cannot get online

Iraq's ancient 'palm climbers' struggle for survival

See-through soil substitutes help scientists study soil ecology

TIME AND SPACE
A new spin on atoms gives scientists a closer look at quantum weirdness

Devil in the defect detail of quantum emissions unravelled

Lighting up the ion trap

Breakthrough quantum-dot transistors create a flexible alternative to conventional electronics

TIME AND SPACE
Colleges, U.S. Air Force partner to improve diversity in STEM training

Navy's Blue Angels prepare for final flight with legacy F/A-18 Hornets

Romania approved for F-16 upgrades in $175.4M deal

Five female fighter pilots test G-force suits modified for women

TIME AND SPACE
Greek island to shift to electric mobility with VW

VW's Traton, Toyota's Hino agree electric truck venture

Charging electric cars up to 90% in 6 minutes

Used car exports drives pollution to developing world

TIME AND SPACE
Ant Group fiasco reflects battle for China's financial soul

Asian markets rally as stimulus hope trumps vote worries

US vote result won't impact trade with Europe, France says

Australia calls for clarity from China over embargo reports

TIME AND SPACE
China's most important trees are hiding in plain sight

Reforestation plans in Africa could go awry

US firms fund deforestation, abuses in Amazon: report

Evidence of biodiversity losses found deep inside the rainforest

TIME AND SPACE
Large, deep Antarctic Ozone Hole persisting into November

Climate change space project awarded to Airbus UK

ISS: 20 years looking over Earth

Germany land motion mapped

TIME AND SPACE
Scientists explain the paradox of quantum forces in nanodevices

Rice rolls out next-gen nanocars

Nano particles for healthy tissue

Hybrid nanomaterials hold promise for improved ceramic composites









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.