Subscribe free to our newsletters via your
. GPS News .




TIME AND SPACE
Measuring the Smallest Magnets
by Staff Writers
Rehovot, Israel (SPX) Jul 29, 2014


An illustration showing the magnetic field lines of two electrons, arranged so that their spins point in opposite directions.

Imagine trying to measure a tennis ball that bounces wildly, every time to a distance a million times its own size. The bouncing obviously creates enormous "background noise" that interferes with the measurement. But if you attach the ball directly to a measuring device, so they bounce together, you can eliminate the noise problem.

As reported recently in Nature, physicists at the Weizmann Institute of Science used a similar trick to measure the interaction between the smallest possible magnets - two single electrons - after neutralizing magnetic noise that was a million times stronger than the signal they needed to detect.

Dr. Roee Ozeri of the Institute's Physics of Complex Systems Department says: "The electron has spin, a form of orientation involving two opposing magnetic poles. In fact, it's a tiny bar magnet." The question is whether pairs of electrons act like regular bar magnets in which the opposite poles attract one another.

Dr. Shlomi Kotler performed the study while a graduate student under Dr. Ozeri's guidance, with Drs. Nitzan Akerman, Nir Navon and Yinnon Glickman.

Detecting the magnetic interaction of two electrons poses an enormous challenge: When the electrons are at a close range - as they normally are in an atomic orbit - forces other than the magnetic one prevail.

On the other hand, if the electrons are pulled apart, the magnetic force becomes dominant, but so weak in absolute terms that it's easily drowned out by ambient magnetic noise emanating from power lines, lab equipment and the earth's magnetic field.

The scientists overcame the problem by borrowing a trick from quantum computing that protects quantum information from outside interference. This technique binds two electrons together so that their spins point in opposite directions. Thus, like the bouncing tennis ball attached to the measuring device, the combination of equal but opposite spins makes the electron pair impervious to magnetic noise.

The Weizmann scientists built an electric trap in which two electrons are bound to two strontium ions that are cooled close to absolute zero and separated by 2 micrometers (millionths of a meter).

At this distance, which is astronomic by the standards of the quantum world, the magnetic interaction is very weak. But because the electron pairs were not affected by external magnetic noise, the interactions between them could be measured with great precision. The measurement lasted for 15 seconds - tens of thousands of times longer than the milliseconds during which scientists have until now been able to preserve quantum data.

The measurements showed that the electrons interacted magnetically just as two large magnets do: Their north poles repelled one another, rotating on their axes until their unlike poles drew near. This is in line with the predictions of the Standard Model, the currently accepted theory of matter. Also as predicted, the magnetic interaction weakened as a function of the distance between them to the power of three.

In addition to revealing a fundamental principle of particle physics, the measurement approach may prove useful in such areas as the development of atomic clocks or the study of quantum systems in a noisy environment.

.


Related Links
Weizmann Institute of Science
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Is The Universe A Bubble? Let's Check
Waterloo, Canada (SPX) Jul 23, 2014
Never mind the big bang; in the beginning was the vacuum. The vacuum simmered with energy (variously called dark energy, vacuum energy, the inflation field, or the Higgs field). Like water in a pot, this high energy began to evaporate - bubbles formed. Each bubble contained another vacuum, whose energy was lower, but still not nothing. This energy drove the bubbles to expand. Inevitably, s ... read more


TIME AND SPACE
China detains five in expired meat scandal: police

The Real Price of Steak

LEDs shine in bedding plant production study

McDonald's earnings edge lower on tepid gobal sales

TIME AND SPACE
Moore's Law Gets Boost With Fundamental Chemistry Finding

Rice's silicon oxide memories catch manufacturers' eye

The World's First Photonic Router

Negar Sani solved the mystery of the printed diode

TIME AND SPACE
Law of physics governs airplane evolution

Boeing boosts 2014 profit forecast after strong Q2

Sweden not a bidder for fighter procurement by Denmark

At least 42 killed in Taiwan plane crash: officials

TIME AND SPACE
Ride-share service Lyft reaches deal with New York

Nissan quarterly profit soars on strong China demand

Really smart cars are ready to take the wheel

Using LED lighting to reduce streetlight glare

TIME AND SPACE
Chinese regulators visit Microsoft offices: Dow Jones

China's Xi eyes increased investment in Cuba

Failed Marx letter sale disappoints Chinese capitalists

Volvo Trucks mulls impact of US fine on marine engines

TIME AND SPACE
Borneo deforested 30 percent over past 40 years

Reducing Travel Assisted Firewood Insect Spread

Walmart store planned for endangered Florida forest

Hunting gives deer-damaged forests a shot at recovery

TIME AND SPACE
NASA's Van Allen Probes Show How to Accelerate Electrons

ADS and Esri Take Satellite Imagery Services to a Premium Level

Ten-Year Endeavor: NASA's Aura Tracks Pollutants

Hyperspec Sensors Target Vegetation Fluorescence

TIME AND SPACE
A Crystal Wedding in the Nanocosmos

NIST shows ultrasonically propelled nanorods spin dizzyingly fast

Low cost technique improves properties of nanomaterials

Rice nanophotonics experts create powerful molecular sensor




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.