![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Boston MA (SPX) May 17, 2017
Carrying out maintenance tasks inside a nuclear plant puts severe strains on equipment, due to extreme temperatures that are hard for components to endure without degrading. Now, researchers at MIT and elsewhere have come up with a radically new way to make actuators that could be used in such extremely hot environments. The system relies on oxide materials similar to those used in many of today's rechargeable batteries, in that ions move in and out of the material during charging and discharging cycles. Whether the ions are lithium ions, in the case of lithium ion batteries, or oxygen ions, in the case of the oxide materials, their reversible motion causes the material to expand and contract. Such expansion and contraction can be a major issue affecting the usable lifetime of a battery or fuel cell, as the repeated changes in volume can cause cracks to form, potentially leading to short-circuits or degraded performance. But for high-temperature actuators, these volume changes are a desired result rather than an unwelcome side effect. The findings are described in a report appearing this week in the journal Nature Materials, by Jessica Swallow, an MIT graduate student; Krystyn Van Vliet, the Michael (1949) and Sonja Koerner Professor of Materials Science and Engineering; Harry Tuller, professor of materials science and engineering; and five others. "The most interesting thing about these materials is that they function at temperatures above 500 degrees Celsius," Swallow explains. That suggests that their predictable bending motions could be harnessed, for example, for maintenance robotics inside a nuclear reactor, or actuators inside jet engines or spacecraft engines. By coupling these oxide materials with other materials whose dimensions remain constant, it is possible to make actuators that bend when the oxide expands or contracts. This action is similar to the way bimetallic strips work in thermostats, where heating causes one metal to expand more than another that is bonded to it, leading the bonded strip to bend. For these tests, the researchers used a compound dubbed PCO, for praseodymium-doped cerium oxide. Conventional materials used to create motion by applying electricity, such as piezoelectric devices, don't work nearly as well at such high temperatures, so the new system could open up a new area of high-temperature sensors and actuators. Such devices could be used, for example, to open and close valves in these hot environments, the researchers say. Van Vliet says the finding was made possible as a result of a high-resolution, probe-based mechanical measurement system for high-temperature conditions that she and her co-workers have developed over the years. The system provides "precision measurements of material motion that here relate directly to oxygen levels," she says, enabling researchers to measure exactly how the oxygen is cycling in and out of the metal oxide. To make these measurements, scientists begin by depositing a thin layer of metal oxide on a substrate, then use the detection system, which can measure small displacements on a scale of nanometers, or billionths of a meter. "These materials are special," she says, "because they 'breathe' oxygen in and out, and change volume, and that causes the substrate to bend." While they demonstrated the process using one particular oxide compound, the researchers say the findings could apply broadly to a variety of oxide materials, and even to other kinds of ions in addition to oxygen, moving in and out of the oxide layer.
![]() Ames IA (SPX) May 17, 2017 Scientists at Ames Laboratory have discovered a method for making smaller, more efficient intermetallic nanoparticles for fuel cell applications, and which also use less of the expensive precious metal platinum. The researchers succeeded by overcoming some of the technical challenges presented in the fabrication of the platinum-zinc nanoparticles with an ordered lattice structure, which fu ... read more Related Links Massachusetts Institute of Technology Space Technology News - Applications and Research
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |