Subscribe free to our newsletters via your
. GPS News .




TIME AND SPACE
Massive neutrinos solve a cosmological conundrum
by Staff Writers
Manchester, UK (SPX) Feb 13, 2014


File image.

Scientists have solved a major problem with the current standard model of cosmology identified by combining results from the Planck spacecraft and measurements of gravitational lensing in order to deduce the mass of ghostly sub-atomic particles called neutrinos.

The team, from the universities of Manchester and Nottingham, used observations of the Big Bang and the curvature of space-time to accurately measure the mass of these elementary particles for the first time.

The recent Planck spacecraft observations of the Cosmic Microwave Background (CMB) - the fading glow of the Big Bang - highlighted a discrepancy between these cosmological results and the predictions from other types of observations.

The CMB is the oldest light in the Universe, and its study has allowed scientists to accurately measure cosmological parameters, such as the amount of matter in the Universe and its age. But an inconsistency arises when large-scale structures of the Universe, such as the distribution of galaxies, are observed.

Professor Richard Battye, from the University of Manchester's School of Physics and Astronomy, said: "We observe fewer galaxy clusters than we would expect from the Planck results and there is a weaker signal from gravitational lensing of galaxies than the CMB would suggest.

"A possible way of resolving this discrepancy is for neutrinos to have mass. The effect of these massive neutrinos would be to suppress the growth of dense structures that lead to the formation of clusters of galaxies."

Neutrinos interact very weakly with matter and so are extremely hard to study. They were originally thought to be massless but particle physics experiments have shown that neutrinos do indeed have mass and that there are several types, known as flavours by particle physicists. The sum of the masses of these different types has previously been suggested to lie above 0.06 eV (much less than a billionth of the mass of a proton).

In this paper, Professor Battye and co-author Dr Adam Moss, from the University of Nottingham, have combined the data from Planck with gravitational lensing observations in which images of galaxies are warped by the curvature of space-time. They conclude that the current discrepancies can be resolved if massive neutrinos are included in the standard cosmological model. They estimate that the sum of masses of neutrinos is 0.320 +/- 0.081 eV (assuming active neutrinos with three flavours).

Dr Moss said: "If this result is borne out by further analysis, it not only adds significantly to our understanding of the sub-atomic world studied by particle physicists, but it would also be an important extension to the standard model of cosmology which has been developed over the last decade."

The paper is published in Physical Review Letters on 7 February and has been selected as an Editor's choice. A copy of the paper is available here

.


Related Links
University of Manchester
Jodrell Bank and Gravitational Lensing
e-MERLIN
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Massive Galaxy Cluster Verifies Predictions of Cosmological Theory
Pasadena CA (SPX) Jan 22, 2014
By observing a high-speed component of a massive galaxy cluster, Caltech/JPL scientists and collaborators have detected for the first time in an individual object the kinetic Sunyaev-Zel'dovich effect, a change in the cosmic microwave background caused by its interaction with massive moving objects. MACS J0717.5+3745 is an extraordinarily dynamic galaxy cluster with a total mass greater th ... read more


TIME AND SPACE
EU plans more tests for horsemeat in food

Danone says will double stake in Chinese milk firm Mengniu

New GM corn gets controversial EU go-ahead

Brazil soy, corn production overcome drought

TIME AND SPACE
New way to measure electron pair interactions

Helical electron and nuclear spin order in quantum wires

New Research Leads To Multifunctional Spintronic Smart Sensors

Ballistic transport in graphene suggests new type of electronic device

TIME AND SPACE
Black box found as Algeria seeks cause of deadly plane crash

Planetary Scientists Get Into Balloon Game

Lockheed Martin Files For FAA Type Design Update

Turkey vows to go ahead with new airport despite court order

TIME AND SPACE
Renault reports profit plunge, radar on China, shares rise

World's largest EV fast charger network in China

Nissan profit jumps as North America, China sales rise

Nissan caps buoyant earnings for Japanese auto giants

TIME AND SPACE
China trade surplus rebounds in January

US names 'notorious markets' for piracy, counterfeiting

Venezuela businesses up in arms over moves to limit profits

Australian tycoon's tirade against Chinese firm

TIME AND SPACE
Controversial Malaysian state boss to resign

Tree roots in the mountains 'acted like a thermostat' for millions of years

NASA Study Points to Infrared-Herring in Apparent Amazon Green-Up

Puzzling 'greening' of Amazon rainforest in dry season an illusion

TIME AND SPACE
Surveying storm damage from space: UK satellite provides images of Somerset floods

NASA-USGS Landsat 8 Satellite Celebrates First Year of Success

Largest Flock of Earth-Imaging Satellites Launch into Orbit From ISS

Olympics: Eye in the sky give viewers dramatic new angle

TIME AND SPACE
Molecular Traffic Jam Makes Water Move Faster through Nanochannels

Physicists at Mainz University build pilot prototype of a single ion heat engine

Quantum dots provide complete control of photons

New boron nanomaterial may be possible




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement