GPS News  
MARSDAILY
Mars likely to have enough oxygen to support life: study
By Marlowe HOOD
Paris (AFP) Oct 22, 2018

Salty water just below the surface of Mars could hold enough oxygen to support the kind of microbial life that emerged and flourished on Earth billions of years ago, researchers reported Monday.

In some locations, the amount of oxygen available could even keep alive a primitive, multicellular animal such as a sponge, they reported in the journal Nature Geosciences.

"We discovered that brines" -- water with high concentrations of salt -- "on Mars can contain enough oxygen for microbes to breathe," said lead author Vlada Stamenkovic, a theoretical physicist at the Jet Propulsion Laboratory in California.

"This fully revolutionises our understanding of the potential for life on Mars, today and in the past," he told AFP.

Up to now, it had been assumed that the trace amounts of oxygen on Mars were insufficient to sustain even microbial life.

"We never thought that oxygen could play a role for life on Mars due to its rarity in the atmosphere, about 0.14 percent," Stamenkovic said.

By comparison, the life-giving gas makes up 21 percent of the air we breathe.

On Earth, aerobic -- that is, oxygen breathing -- life forms evolved together with photosynthesis, which converts CO2 into O2. The gas played a critical role in the emergence of complex life, notable after the so-called Great Oxygenation Event some 2.35 billion years ago.

But our planet also harbours microbes -- at the bottom of the ocean, in boiling hotsprings -- that subsist in environments deprived of oxygen.

"That's why -- whenever we thought of life on Mars -- we studied the potential for anaerobic life," Stamenkovic.

- Life on Mars? -

The new study began with the discovery by NASA's Curiosity Mars rover of manganese oxides, which are chemical compounds that can only be produced with a lot of oxygen.

Curiosity, along with Mars orbiters, also established the presence of brine deposits, with notable variations in the elements they contained.

A high salt content allows for water to remain liquid -- a necessary condition for oxygen to be dissolved -- at much lower temperatures, making brines a happy place for microbes.

Depending on the region, season and time of day, temperatures on the Red Planet can vary between minus 195 and 20 degrees Celsius (minus 319 to 68 degrees Fahrenheit).

The researchers devised a first model to describe how oxygen dissolves in salty water at temperatures below freezing.

A second model estimated climate changes on Mars over the last 20 million years, and over the next 10 million years.

Taken together, the calculations showed which regions on the Red Planet are most likely to produce brine-based oxygen, data that could help determine the placement of future probes.

"Oxygen concentrations [on Mars] are orders of magnitude" -- several hundred times -- "greater than needed by aerobic, or oxygen-breathing -- microbes," the study concluded.

"Our results do not imply that there is life on Mars," Stamenkovic cautioned. "But they show that the Martian habitability is affected by the potential of dissolved oxygen."


Related Links
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
Ancient Mars had right conditions for underground life
Providence RI (SPX) Sep 25, 2018
A new study shows evidence that ancient Mars probably had an ample supply of chemical energy for microbes to thrive underground. "We showed, based on basic physics and chemistry calculations, that the ancient Martian subsurface likely had enough dissolved hydrogen to power a global subsurface biosphere," said Jesse Tarnas, a graduate student at Brown University and lead author of a study published in Earth and Planetary Science Letters. "Conditions in this habitable zone would have been similar to ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
A warmer spring leads to less plant growth in summer

Summer drought may shrink supplies of French spuds

Study finds potential benefits of wildlife-livestock coexistence in East Africa

China prices rise as cost of food spikes

MARSDAILY
First proof of quantum computer advantage

Announcing the discovery of an atomic electronic simulator

Electrical enhancement: Engineers speed up electrons in semiconductors

Printed 3D supercapacitor electrode breaks records in lab tests

MARSDAILY
Rockwell Collins wins bid for Navy aircraft repair

Northrop contracted for electronics upgrades on Growler, Prowler

AAR, Boeing, StandardAero contracted for P-8A Poseidon support

Dandelion seeds reveal newly discovered form of natural flight

MARSDAILY
Carbon fiber can store energy in the body of a vehicle

Uber eyes valuation topping $100 bn in IPO: sources

German prosecutors raid Opel over diesel allegations

New, durable catalyst for key fuel cell reaction may prove useful in eco-friendly vehicles

MARSDAILY
China not manipulating currency but lacks transparency, US says

China launches full-throated bid to boost confidence in stocks

Asia-Pacific finance ministers fret over US-China spat

US tariffs trigger WTO spat escalation

MARSDAILY
Forest carbon stocks have been overestimated for 50 years

Tracking the movement of the tropics 800 years into the past

The population of a tropical tree increases mostly in places where it is rare

Climate summit host Poland says smart forest management key

MARSDAILY
Government of Canada to invest $7.2M in exactEarth

Earth observation data market to reach $2.4B

DigitalGlobe expands NASA partnership with sole-source EO data contract

Earth's core is definitely solid, study finds

MARSDAILY
Big discoveries about tiny particles

Precise control of multimetallic one-nanometer cluster formation achieved

Two quantum dots are better than one: Using one dot to sense changes in another

Nucleation a boon to sustainable nanomanufacturing









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.