Subscribe free to our newsletters via your
. GPS News .




BIO FUEL
Maps of Miscanthus genome offer insight into grass evolution
by Staff Writers
Champaign, IL (SPX) May 17, 2012


University of Illinois crop sciences professor and Energy Biosciences Institute program leader Stephen Moose and his colleagues mapped the Miscanthus sinensis genome, a first step towards a full genome sequence. Credit: L. Brian Stauffer.

Miscanthus grasses are used in gardens, burned for heat and energy, and converted into liquid fuels. They also belong to a prominent grass family that includes corn, sorghum and sugarcane. Two new, independently produced chromosome maps of Miscanthus sinensis (an ornamental that likely is a parent of Miscanthus giganteus, a biofuels crop) are a first step toward sequencing the M. sinensis genome.

The studies reveal how a new plant species with distinctive traits can arise as a result of chromosome duplications and fusions.

The two studies were published this year: The first, led by the energy crop company Ceres, appeared in the journal PLoS ONE; the second, from a team led by researchers at the University of Illinois, is in the journal BMC Genomics. The data, materials, methods and genetic markers used in the latter study are available to the public for further research.

Before this work, scientists knew that M. sinensis had a base set of 19 chromosomes and was closely related to sorghum, which has a base set of 10. (Humans have a base set of 23).

But without a map and sequence of the Miscanthus genome, researchers who hope to maximize yields or discover which genes give Miscanthus its desirable traits are working in the dark, said Stephen Moose, a University of Illinois crop sciences professor and Energy Biosciences Institute program leader who led the BMC Genomics study.

Moose and his colleagues used information gleaned from the sugarcane genome to develop hundreds of genetic markers to target specific regions of the M. sinensis genome. Then they crossed two M. sinensis plants and grew 221 offspring in the lab.

By comparing how the genetic markers from each parent were sorted in the offspring, the team reconstructed 19 "linkage groups" corresponding to the 19 chromosomes of Miscanthus. This rough map of the chromosomes is a first step toward a Miscanthus genome, Moose said.

The researchers also used the sorghum genome as a comparative reference. Their analysis indicated thatM. sinensis arose as a result of a duplication of the sorghum genome, with a later fusion of some chromosome parts.

"Some plants will duplicate their genomes and then there's some sorting that goes on," Moose said. "Sometimes whole chromosomes are lost and sometimes there are fusions." Once there are two copies of each chromosome in a base set, each will proceed along its own evolutionary trajectory. "Often what will happen is even though there are two (versions of the same chromosome), one of them will start to deteriorate over time," Moose said. "Some positions and some genes will win out over the others."

Genome duplications may undermine the viability of a plant or give it an advantage. One immediate advantage of doubling, tripling or otherwise duplicating the genome is that it increases the size of the plant, or of certain plant parts, Moose said.

"Humans have selected for these traits," he said. "Strawberries, for example, are octoploids; they have eight chromosome sets. Sugarcane has eight sets, and it's bigger (than its wild cousins)."

Moose and his colleagues were surprised to find a high degree of similarity between the Miscanthus and sorghum genomes.

"I would say that for about 90 percent of the Miscanthus markers, their chromosomal order corresponds to what is known for sorghum," he said.

The new findings and the eventual publication of the Miscanthus genome will help scientists understand the evolution of grasses and the genetic mechanisms that give them some of their useful traits, such as cold tolerance, Moose said.

.


Related Links
University of Illinois at Urbana-Champaign
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BIO FUEL
Iowa State, Salk researchers make plant protein discovery that could boost bioeconomy
Ames IA (SPX) May 16, 2012
Research groups from Iowa State University and the Salk Institute for Biological Studies have uncovered the function of three plant proteins, a discovery that could help plant scientists boost seed oil production in crops, thereby benefitting the production of food, biorenewable chemicals and biofuels. The analysis of gene activity (by the Iowa group) and determination of protein structure ... read more


BIO FUEL
Barley takes a leaf out of reindeer's book in the land of the midnight sun

Cambodian girl killed in land row: official

Wasted milk is a real drain on our resources

Tiny plants could cut costs, shrink environmental footprint

BIO FUEL
Researchers map path to quantum electronic devices

Fast, low-power, all-optical switch

SK Hynix pulls out of bid for Japan's Elpida

Electric charge disorder: A key to biological order?

BIO FUEL
Superjet crash blamed on clouds - official

Russia to buy 90 brand-new Su-35S fighters

Russian Air Force roundtable: status quo, revamps, perspectives

Citing safety, Pentagon chief limits flights of F-22 jets

BIO FUEL
Nissan posts record sales, $4.28 bn net profit

Electric-powered van to make trans-Africa trip

Toyota full-year profits dive, pledges recovery

China sees red as Ferrari damages ancient wall

BIO FUEL
Global demand for gold dips 5%: industry report

Myanmar and South Korea set for business

Croatia, China laud deepening ties

Uruguay export link at risk from Argentina

BIO FUEL
Brazil's threatened Awa tribe outnumbered, group says

Model Forecasts Long-Term Impacts of Forest Land-Use Decisions

Time, place and how wood is used are factors in carbon emissions from deforestation

Model Forecasts Long-Term Impacts of Forest Land-Use Decisions

BIO FUEL
Moscow court upholds ban against satellite image distributor

New Carbon-Counting Instrument Leaves the Nest

China launches new remote-sensing satellite

ESA declares end of mission for Envisat

BIO FUEL
New technique uses electrons to map nanoparticle atomic structures

Light touch keeps a grip on delicate nanoparticles

Next-Generation Nanoelectronics: A Decade of Progress, Coming Advances

Nanotech gets boost from nanowire decorations




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement