GPS News  
EARLY EARTH
Mantle neon illuminates Earth's formation
by Staff Writers
Davis CA (SPX) Dec 06, 2018

file illustration only

The Earth formed relatively quickly from the cloud of dust and gas around the Sun, trapping water and gases in the planet's mantle, according to research published Dec. 5 in the journal Nature. Apart from settling Earth's origins, the work could help in identifying extrasolar systems that could support habitable planets.

Drawing on data from the depths of the Earth to deep space, University of California Davis Professor Sujoy Mukhopadhyay and postdoctoral researcher Curtis Williams used neon isotopes to show how the planet formed.

"We're trying to understand where and how the neon in Earth's mantle was acquired, which tells us how fast the planet formed and in what conditions," Williams said.

Neon is actually a stand-in for where gases such as water, carbon dioxide and nitrogen came from, Williams said. Unlike these compounds that are essential for life, neon is an inert noble gas, and it isn't influenced by chemical and biological processes.

"So neon keeps a memory of where it came from even after four and a half billion years," Mukhopadhyay said.

There are three competing ideas about how the Earth formed from a protoplanetary disk of dust and gas over four billion years ago and how water and other gases were delivered to the growing Earth. In the first, the planet grew relatively quickly over two to five million years and captured gas from the nebula, the swirling cloud of dust and gas surrounding the young Sun.

The second theory suggests dust particles formed and were irradiated by the Sun for some time before condensing into miniature objects called planetesimals that were subsequently delivered to the growing planet. In the third option, the Earth formed relatively slowly and gases were delivered by carbonaceous chondrite meteorites that are rich in water, carbon and nitrogen.

These different models have consequences for what the early Earth was like, Mukhopadhyay said. If the Earth formed quickly out of the solar nebula, it would have had a lot of hydrogen gas at or near the surface. But if the Earth formed from carbonaceous chondrites, its hydrogen would have come in the more oxidized form, water.

Neon from ocean floor to deep space
To figure out which of the three competing ideas on planet formation and delivery of gases were correct, Williams and Mukhopadhyay accurately measured the ratios of neon isotopes that were trapped in the Earth's mantle when the planet formed. Neon has three isotopes, neon-20, 21 and 22.

All three are stable and non-radioactive, but neon-21 is formed by radioactive decay of uranium. So the amounts of neon-20 and 22 in the Earth have been stable since the planet formed and will remain so forever, but neon-21 slowly accumulates over time. The three scenarios for Earth's formation are predicted to have different ratios of neon-20 to neon-22.

The closest they could get to the mantle was to look at rocks called pillow basalts on the ocean floor. These glassy rocks are the remains of flows from deep in the Earth that spilled out and cooled in the ocean, later to be collected by a drilling expedition led by the University of Rhode Island, which makes its collection available to other scientists.

The gases are found in tiny bubbles within the basalt. Using a press, Williams cracked basalt chips in a sealed chamber, allowing the gases to flow into a sensitive mass spectrometer.

Now for the space part. Previous researchers established the neon isotope ratio for the "solar nebula" (early rapid formation) model with data from the Genesis mission, which captured particles of the solar wind. Data for the "irradiated particles" model came from analyses of lunar soils and of meteorites. Finally, carbonaceous chondrite meteorites provided data for the "late accretion" model.

Minimum size for a habitable planet
The isotope ratios they found were well above those for the "irradiated particles" or "late accretion" models, Williams said, and support rapid early formation.

"This is a clear indication that there is nebular neon in the deep mantle," Williams said.

Neon, remember, is a marker for those other volatile compounds. Hydrogen, water, carbon dioxide and nitrogen would have been condensing into the Earth at the same time - all ingredients that, as far as we know, go into making up a habitable planet.

The results imply that to absorb these vital compounds, a planet must reach a certain size - the size of Mars or a little larger - before the solar nebula dissipates. Observations of other solar systems show that this takes about two to three million years, Williams said.

Does the same process happen around other stars? Observations from the Atacama Large Millimeter Array, or ALMA, observatory in Chile suggest that it does, the researchers said.

ALMA uses an array of 66 radiotelescopes working as a single instrument to image dust and gas in the universe. It can see the planet-forming disks of dust and gas around some nearby stars. In some cases, there are dark bands in those disks where dust has been depleted.

"There are a couple of ways dust could be depleted from the disk, and one of them is that they are forming planets," Williams said.

"We can observe planet formation in a gas disk in other solar systems, and there is a similar record of our own solar system preserved in Earth's interior," Mukhopadhyay said. "This might be a common way for planets to form elsewhere."

Research paper


Related Links
University of California - Davis
Explore The Early Earth at TerraDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARLY EARTH
Fires fueled spread of grasslands on ancient Earth
University Park PA (SPX) Dec 03, 2018
Ancient wildfires played a crucial role in the formation and spread of grasslands like those that now cover large parts of the Earth, according to scientists at Penn State and the Smithsonian National Museum of Natural History. A new study links a large rise in wildfires nearly 10 million years ago, in the late Miocene, with a major shift in vegetation on land, as indicated by carbon isotopes of plant biomarkers found in the fossil record. Frequent, seasonal fires helped turn forested areas into o ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
US farmers more cautious than hopeful after China trade deal

Soil tilling, mulching key to China's potato crop

Floods ravage rice production in Niger's Diffa region

The tragedy of the commons - minus the tragedy

EARLY EARTH
New quantum materials could take computing devices beyond the semiconductor era

A new light on significantly faster computer memory devices

USC scientists find a way to enhance the performance of quantum computers

Colloidal quantum dots make LEDs shine bright in the infrared

EARLY EARTH
Lockheed Martin, Airbus to collaborate on aerial refueling

Luke AFB stands up F-35 squadron for Netherlands

United Technologies contracted for F-35 engine logistics support

New-found debris believed from Flight MH370 handed to Malaysia govt

EARLY EARTH
Madrid orders removal of electric scooters

Volkswagen says next generation of combustion engine cars to be its last

Luxury 'Red Flag' models buck China auto sales slump

China agrees to 'reduce and remove' tariffs on US cars: Trump

EARLY EARTH
Panama awards $1.4 bn bridge project to Chinese group

Portugal moving down Chinese silk road

China vows quick trade moves as US sends mixed signals

China vows quick trade moves, Trump upbeat

EARLY EARTH
Snowpack declines may stunt tree growth and forests' ability to store carbon emissions

Brazil's Bolsonaro blasts govt environmental agencies

Brazil loses 'one million football pitches' worth of forest

In Lebanon, climate change devours ancient cedar trees

EARLY EARTH
Macroscopic phenomena governed by microscopic physics

To image leaky atmosphere, NASA rocket team heads north

Earth needs climate 'reality check', space pioneer warns

Greenhouse gas detergent recycles itself in atmosphere

EARLY EARTH
How microscopic machines can fail in the blink of an eye

Stealth-cap technology for light-emitting nanoparticles

Nano-scale process may speed arrival of cheaper hi-tech products

Watching nanoparticles









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.