GPS News  
TECH SPACE
Making polymer chemistry 'click'
by Staff Writers
Berkeley CA (SPX) Jul 27, 2017


A researcher demonstrates bulk synthesis of a polysulfate, which relies on a chemical technique dubbed a SuFEx reaction. Image courtesy Berkeley Lab.

A team of researchers has developed a faster and easier way to make sulfur-containing polymers that will lower the cost of large-scale production. The achievement, published in Nature Chemistry and Angewandte Chemie, opens the door to creating new products from this class of polymers while producing far less hazardous waste.

The researchers' reaction technique, dubbed SuFEx for sulfur(VI) fluoride exchange, combined with a newly identified class of catalysts that speed up the reactions, could be used to make everything from water bottles and mobile phone cases to medical devices and bulletproof glass.

When a useful molecule is discovered, there are few reactions that chemists can use that are simple and efficient enough to meet the industrial production requirements for cost-effectively scaling up. In 2001, Nobel laureate K. Barry Sharpless introduced a new concept to organic chemistry known as "click chemistry," describing a suite of controllable, highly reactive reactions that are high-yielding and require little to no purification.

Following nature's example, click reactions follow simple protocols, use readily available starting materials, and work under mild reaction conditions with benign starting reagents. Click chemistry has become a valuable tool for generating large libraries of potentially useful compounds as industries look to discover new drugs and materials.

Scientists at Lawrence Berkeley National Laboratory's (Berkeley Lab) Molecular Foundry, a facility that specializes in nanoscale science, worked with a team led by Sharpless and Peng Wu, professors at the Scripps Research Institute (TSRI). The team created long chains of linked sulfur-containing molecules, termed polysulfates and polysulfonates, using a SuFEx click reaction.

"Click chemistry is a powerful tool for materials discovery, but synthetic chemists are often not well-equipped to characterize the polymers they create," said Yi Liu, director of the Organic Synthesis facility at the Molecular Foundry. "We can provide a broad spectrum of expertise and instrumentation that can expand the scope and impact of their research."

The SuFEx reaction, introduced as a new family of click reactions in 2014, reliably and quickly creates new chemical bonds, connecting compounds together with sulfates or sulfonates. While polysulfates have shown great potential as competitors to polycarbonates (strong plastics used for eyewear lenses and water bottles, for example), they have been rarely used for industrial applications due to a lack of reliable and easily scalable synthetic processes.

To overcome the challenges of mass-manufacturing polysulfates and polysulfonates, the TSRI team explored various catalysts and starting reagents to optimize the SuFEx reaction. They relied on their collaborators at the Molecular Foundry to assess physical properties and determine if the newly created polymers were thermally stable products.

Polymers are assembled from smaller molecules - like stringing a repeating pattern of beads on a necklace. In creating a polysulfonate "necklace" with SuFEx, the researchers identified ethenesulfonyl fluoride-amine/aniline and bisphenol ether as good "beads" to use and found that using bifluoride salt as a catalyst made the previously slow reaction "click" into action. Researchers found that the high efficiency of the reaction results in a remarkable 99 percent conversion, from starting reactants to products, in less than an hour.

Researchers found that the new reaction requires 100 to 1,000 times less catalyst than other known methods, resulting in significantly less hazardous waste. Bifluoride salts are also much less corrosive than previously used catalysts, allowing for a wider range of starting substrate "beads," which researchers said they hope could lead to its adoption for a range of industrial processes.

"There are many new polymers that haven't been widely used by industry before," said Liu. "By reducing waste and improving product purity, we lower the cost and make this reaction much more industry friendly."

The Molecular Foundry is a DOE Office of Science User Facility that provides free access to state of the art equipment and multidisciplinary expertise in nanoscale science to visiting scientists from all over the world.

Research paper

TECH SPACE
Multitasking monolayers
Nashville TN (SPX) Jul 25, 2017
Two-dimensional materials that can multitask. That is the result of a new process that naturally produces patterned monolayers that can act as a base for creating a wide variety of novel materials with dual optical, magnetic, catalytic or sensing capabilities. "Patterned materials open up the possibility of having two functionalities in a single material, such as catalyzing a chemica ... read more

Related Links
Lawrence Berkeley National Laboratory
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Neolithic farmers practiced specialized methods of cattle farming

Adjusting fertilizers vital in claypan ag soils

Disneyland China falls a-fowl of huge turkey leg demand

One plant at a time is precise

TECH SPACE
Ultracold molecules hold promise for quantum computing

Hamburg researchers develop new transistor concept

Five times the computing power

Pulses of electrons manipulate nanomagnets and store information

TECH SPACE
Lockheed receives contract 50 F-35s for foreign military sales

Boeing, U.S. military finish EMP testing on KC-46 tanker

Switzerland approved for F/A-18 upgrade package

China Eastern Airlines to acquire 10% of Air France-KLM

TECH SPACE
Sophisticated medical imaging technique proves useful for automotive industry

Volkswagen to refit 1 million more diesel cars in Germany

Los Angeles to have fully electric bus fleet by 2030

Is 'diesel summit' the last chance for Germany's favourite engine

TECH SPACE
China tells Trump not to link trade to N. Korea

Economic rebound bypasses Spain's poorest neighbourhood

China manufacturing expansion slows in July

Starbucks takes full control of China stores in $1.3 bn deal

TECH SPACE
EU court orders Poland to suspend logging in ancient forest

Poland to keep logging in ancient forest: minister

Poles revive ancient tradition of timber floating

Trees can make or break city weather

TECH SPACE
Aalto-1 satellite sends first image back to VTT Finland

NASA Solves a Drizzle Riddle

Nickel key to Earth's magnetic field, research shows

Manmade aerosols identified as driver in shifting global rainfall patterns

TECH SPACE
New method promises easier nanoscale manufacturing

Nanoparticles could spur better LEDs, invisibility cloaks

New material resembling a metal nanosponge could reduce computer energy consumption

How do you build a metal nanoparticle?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.