GPS News  
CARBON WORLDS
Making a transparent flexible material of silk and nanotubes
by Staff Writers
Pittsburgh PA (SPX) Oct 31, 2018

This is a schematic diagram illustrating the structural changes of RSF-CNT composite film exhibited during microwave- and vapor-treatment.

The silk fibers produced by Bombyx mori, the domestic silkworm, has been prized for millennia as a strong yet lightweight and luxurious material. Although synthetic polymers like nylon and polyester are less costly, they do not compare to silk's natural qualities and mechanical properties. And according to research from the University of Pittsburgh's Swanson School of Engineering, silk combined with carbon nanotubes may lead to a new generation of biomedical devices and so-called transient, biodegradable electronics.

The study, "Promoting Helix-Rich Structure in Silk Fibroin Films through Molecular Interactions with Carbon Nanotubes and Selective Heating for Transparent Biodegradable Devices" (DOI: 10.1021/acsanm.8b00784), was featured on the Oct. 26 cover of the American Chemistry Society journal Applied Nano Materials.

"Silk is a very interesting material. It is made of natural fibers that humans have been using for thousands of years to make high quality textiles, but we as engineers have recently started to appreciate silk's potential for many emerging applications such as flexible bioelectronics due to its unique biocompatibility, biodegradability and mechanical flexibility," noted Mostafa Bedewy, assistant professor of industrial engineering at the Swanson School and lead author of the paper. "The issue is that if we want to use silk for such applications, we don't want it to be in the form of fibers. Rather, we want to regenerate silk proteins, called fibroins, in the form of films that exhibit desired optical, mechanical and chemical properties."

As explained by the authors in the video below, these regenerated silk fibroins (RSFs) however typically are chemically unstable in water and suffer from inferior mechanical properties, owing to the difficulty in precisely controlling the molecular structure of the fibroin proteins in RSF films.

Bedewy and his NanoProduct Lab group, which also work extensively on carbon nanotubes (CNTs), thought that perhaps the molecular interactions between nanotubes and fibroins could enable "tuning" the structure of RSF proteins.

"One of the interesting aspects of CNTs is that, when they are dispersed in a polymer matrix and exposed to microwave radiation, they locally heat up," Dr. Bedewy explained. "So we wondered whether we could leverage this unique phenomenon to create desired transformations in the fibroin structure around the CNTs in an "RSF-CNT" composite."

According to Dr. Bedewy, the microwave irradiation, coupled with a solvent vapor treatment, provided a unique control mechanism for the protein structure and resulted in a flexible and
transparent film comparable to synthetic polymers but one that could be both more sustainable and degradable.

These RSF-CNT films have potential for use in flexible electronics, biomedical devices and transient electronics such as sensors that would be used for a desired period inside the body ranging from hours to weeks, and then naturally dissolve.

"We are excited about advancing this work further in the future, as we are looking forward to developing the science and technology aspects of these unique functional materials," Dr. Bedewy said.

"From a scientific perspective, there is still a lot more to understand about the molecular interactions between the functionalization on nanotube surfaces and protein molecules. From an engineering perspective, we want to develop scalable manufacturing processes for taking cocoons of natural silk and transforming them into functional thin films for next generation wearable and implantable electronic devices."

Research paper


Related Links
University of Pittsburgh
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CARBON WORLDS
Deformation of nanotubes to control conductivity
Moscow, Russia (SPX) Oct 24, 2018
Scientists from the NUST MISIS Laboratory of Inorganic Nanomaterials together with their international colleagues have proved it possible to change the structural and conductive properties of nanotubes by stretching them. This can potentially expand nanotubes' application into electronics and high-precision sensors such as microprocessors and high-precision detectors. The research article has been published in Ultramicroscopy. Carbon nanotubes can be represented as a sheet of graphene rolled ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
A topical gel to protect farmers from lethal effects of pesticides

Summer drought may shrink supplies of French spuds

Judge slashes award but upholds verdict in Monsanto cancer trial

'Himalayan Viagra' under threat from climate change: researchers

CARBON WORLDS
Researchers create scalable platform for on-chip quantum emitters

Inexpensive chip-based device may transform spectrometry

Announcing the discovery of an atomic electronic simulator

Printed 3D supercapacitor electrode breaks records in lab tests

CARBON WORLDS
A Chinese farmer couldn't fly a plane, so he built one

Cathay Pacific hit by data leak affecting 9.4m passengers

Indonesia $200m in arrears on fighter project: S. Korea

Dandelion seeds reveal newly discovered form of natural flight

CARBON WORLDS
After 'historic' quarter, Tesla looks to Europe, China

Electriq~Global launches water-based fuel to power electric vehicles

European car stocks surge on report of China tax cut

New driverless car technology could make traffic lights and speeding tickets obsolete

CARBON WORLDS
Switzerland's Richemont, China's Alibaba team up

Pompeo says US to fight China 'empire' of 'bribes'

Deutsche Post sells off Chinese supply chain business

Trade ministers, without US and China, call for urgent WTO reforms

CARBON WORLDS
Saving the precious wood of Gabon's forests from illegal logging

Saving the precious wood of Gabon's forests from illegal logging

Salmon graveyard gives rise to forest in Alaska

Brazil's Amazon at risk if Bolsonaro wins presidency: ecologists

CARBON WORLDS
Researchers develop an operative complex scheme for short-range weather forecasts

Zooming in on Mexico's landscape

Government of Canada to invest $7.2M in exactEarth

Earth observation data market to reach $2.4B

CARBON WORLDS
Researchers discover directional and long-lived nanolight in a 2D material

Big discoveries about tiny particles

Precise control of multimetallic one-nanometer cluster formation achieved

Two quantum dots are better than one: Using one dot to sense changes in another









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.