GPS News  
CHIP TECH
Magnetic materials could improve the performance of quantum computing circuits
by Staff Writers
Urbana IL (SPX) Aug 17, 2021

"If we are wildly successful within these three years, we will have magnetic structures directly integrated with quantum circuitry," Hoffmann said.

Quantum computers could eventually tackle certain problems that today are difficult or impossible to solve, even for the most powerful high-performance computers. Before that can happen, scientists and engineers must overcome major challenges related to the stability and scalability of the technology.

Under a new award from the U.S. Department of Energy, a team of researchers at the University of Illinois Urbana-Champaign and Argonne National Laboratory will be pursuing one promising avenue: the use of magnetic materials to mitigate the "noise" that impacts the performance of quantum computing hardware.

Quantum computing hardware currently comes in different flavors, from charged atoms to light particles to chips laced with superconducting wires. In that last case, the quantum processing chip lives inside a special refrigerator at a temperature close to absolute zero (-273 degrees Celsius). The extreme environment freezes out the heat that erodes quantum functionality.

Even at such temperatures, though, there are still unwanted disruptions to both computations and data transmission. For example, thermal noise can sneak in through the wires that go into the fridge to control the computer and extract data. The question is, how can the impact of that noise be softened?

One of the first approaches the UIUC and Argonne researchers will try is to design a one-way path for signals traveling in and out of the fridge, thus reducing the likelihood that heat can get in. Such non-reciprocal circuitry already exists, but the team wants to integrate this feature on the chip in a novel way: by harnessing magnetic features.

"Magnets have built-in non-reciprocity, meaning you can isolate one side from the other," said Axel Hoffmann, who is a Founder Professor of Engineering in UIUC's Department of Materials Science and Engineering and a researcher in its Materials Science Lab. "What we aim to do is to create an approach that hybridizes magnons [i.e., magnetic effects] with excitations of microwave photons or light excitations [which are other signals that are typically used for quantum information], to create a device that works at low temperatures and reduces noise."

One of the team's top priorities will be to identify magnets that work at low temperatures. The researchers will explore both known and new materials to find candidates that can handle an extreme, frigid environment and also be compatible with quantum operations on-chip.

"This is not trivial," said Hoffmann. "Many magnets work well with microwaves [i.e., the microwave signals that are critical to these devices] at room temperature. We need materials that work also well at much lower temperatures, which may completely change their properties."

The 3-year, $4.2 million project will also explore use of magnetic materials as a medium for converting signals from one frequency to another while preserving quantum information. If researchers are successful in creating a hybrid device at small scales, this work could also have applications in non-quantum devices for sensing and communication, such as in Wi-Fi or Bluetooth technologies.

Crucially, success in the project relies on bringing together researchers from different disciplines. In addition to Hoffman, the team includes Yi Li and Valentine Novosad of Argonne and Wolfgang Pfaff, Andre Schleife, and Jian-Min Zuo of the University of Illinois. They combine expertise in materials synthesis (Hoffmann and Novosad), advanced structural characterization (Zuo), computational materials science (Schleife), magnetization dynamics (Li), and quantum information systems (Pfaff).

"If we are wildly successful within these three years, we will have magnetic structures directly integrated with quantum circuitry," Hoffmann said.


Related Links
University Of Illinois Grainger College Of Engineering
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Google to build its own chip for new Pixel smartphone
Mountain View, United States (AFP) Aug 2, 2021
Google on Monday unveiled a new flagship Pixel smartphone powered by its first mobile chip to put artificial intelligence in people's hands. Pixel 6 models set for release later this year, with superfast 5G wireles capability, will debut Google's own Tensor chip crafted along the lines of processors it made for data centers to enable computers to think more like people do. "It's basically a mobile system on a chip designed around artificial intelligence," Google devices senior vice president Ric ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
New gene to make plants heat-tolerant in rising temperatures

In blistering drought, California farmers rip up precious almond trees

A drought-hit California town finds itself sinking into the ground

Pig farms accused of defiling Mexico's 'sacred wells'

CHIP TECH
Magnetic materials could improve the performance of quantum computing circuits

Google to build its own chip for new Pixel smartphone

The chips are down: why there's a semiconductor shortage

Concepts for the development of German quantum computers

CHIP TECH
JetPack Aviation announces selection in AFWERX High Speed VTOL Concept Challenge

US to reopen Boeing-Airbus bidding war over refuellers

Hong Kong carrier Cathay Pacific posts $972 mn first-half loss

Lockheed Martin unveils intelligent, flexible factory at the Skunk Works in Palmdale, California

CHIP TECH
Designing better batteries for electric vehicles

US opens probe of Tesla Autopilot after 11 crashes: agency

Electrifying cars and light trucks to meet Paris climate goals

Dutch lead charge for electric car stations

CHIP TECH
China partly shuts world's third busiest cargo port over virus case

Asian markets mostly down as China fears reappear

Global stocks mixed as Chinese data disappoints

Asian markets drop as traders eye Fed move, Delta spread

CHIP TECH
Brazil has near-record year for Amazon deforestation

Russia's forests store more carbon than previously thought

Trapped saltwater caused mangrove death after Hurricane Irma

Finnish monks turn to forestry to cover virus losses

CHIP TECH
Stanford researchers use artificial intelligence to unlock extreme weather mysteries

Gearing up for third Sentinel-2 satellite

India to launch earth observation satellite GISAT-1/EOS-3 on August 12

Ball Aerospace completes preliminary design review of NOAA's Space Weather Satellite

CHIP TECH
Striking Gold: A Pathway to Stable, High-Activity Catalysts from Gold Nanoclusters

Tracking the movement of a single nanoparticle

Researchers demonstrate technique for recycling nanowires in electronics

Custom-made MIT tool probes materials at the nanoscale









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.