Subscribe free to our newsletters via your
. GPS News .




SOLAR DAILY
Magnetic fingerprints of interface defects in silicon solar cells detected
by Staff Writers
Berlin, Germany (SPX) Apr 02, 2013


Picture: HZB / University Paderborn.

Using a highly sensitive method of measurement, HZB physicists have managed to localize defects in amorphous/crystalline silicon heterojunction solar cells. Now, for the first time ever, using computer simulations at Paderborn University, the scientists were able to determine the defects' exact locations and assign them to certain structures within the interface between the amorphous and crystalline phases.

In theory, silicon-based solar cells are capable of converting up to 30 percent of sunlight to electricity - although, in reality, the different kinds of loss mechanisms ensure that even under ideal lab conditions it does not exceed 25 %. Advanced heterojunction cells shall affront this problem: On top of the wafer's surface, at temperatures below 200 C, a layer of 10 nanometer disordered (amorphous) silicon is deposited.

This thin film is managing to saturate to a large extent the interface defects and to conduct charge carriers out of the cell. Heterojunction solar cells have already high efficiency factors up to 24,7 % - even in industrial scale. However, scientists had until now only a rough understanding of the processes at the remaining interface defects.

Now, physicists at HZB's Institute for Silicon Photovoltaics have figured out a rather clever way for detecting the remaining defects and characterizing their electronic structure.

"If electrons get deposited on these defects, we are able to use their spin, that is, their small magnetic moment, as a probe to study them," Dr. Alexander Schnegg explains. With the help of EDMR, electrically detected magnetic resonance, an ultrasensitive method of measurement, they were able to determine the local defects' structure by detecting their magnetic fingerprint in the photo current of the solar cell under a magnetic field and microwave radiation.

Theoretical physicists of Paderborn University could compare these results with quantum chemical computer simulations, thus obtaining information about the defects' positions within the layers and the processes they are involved to decrease the cells' efficiency.

"We basically found two distinct families of defects", says Dr. Uwe Gerstmann from Paderborn University, who collaborates with the HZB Team in a program sponsored by Deutsche Forschungsgemeinschaft (DFG priority program 1601).

"Whereas in the first one, the defects are rather weakly localized within the amorphous layer, a second family of defects is found directly at the interface, but in the crystalline silicon."

For the first time ever the scientists have succeeded at directly detecting and characterizing processes with atomic resolution that compromise these solar cells' high efficiency. The cells were manufactured and measured at the HZB; the numerical methods were developed at Paderborn University. "We can now apply these findings to other types of solar cells in order to optimize them further and to decrease production costs", says Schnegg.

This work is published on March 27, 2013, in Phys. Rev. Letters at the following doi: 10.1103/PhysRevLett.110.136803

.


Related Links
HZB
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR DAILY
New Type of Solar Structure Cools Buildings in Full Sunlight
Stanford CA (SPX) Apr 01, 2013
Homes and buildings chilled without air conditioners. Car interiors that don't heat up in the summer sun. Tapping the frigid expanses of outer space to cool the planet. Science fiction, you say? Well, maybe not any more. A team of researchers at Stanford has designed an entirely new form of cooling structure that cools even when the sun is shining. Such a structure could vastly improve the ... read more


SOLAR DAILY
Study looks at why chickens overeat

Researchers Find Novel Way Plants Pass Traits to Next Generation

China fertiliser leaves tons of harmful waste: report

Pesticide combination affects bees' ability to learn

SOLAR DAILY
Technique for cooling molecules may be a stepping stone to quantum computing

Penn engineers enable 'bulk' silicon to emit visible light for the first time

TED brings innovation talk to Intel

Ultra-precision positioning

SOLAR DAILY
Peru mulls replacing aged air force jets

Two Chinese airlines record falls in 2012 profits

France says Malaysia can build jets if it buys Rafale

Navy tasks Virginia Tech research team with reducing deafening roar of fighter jets

SOLAR DAILY
US announces stricter gasoline standards

Japan venture to bring electric tuk-tuks to Asia

China car maker BYD reports profit plunge

Man creates car that runs on liquid air

SOLAR DAILY
US visa day sparks new debate on tech workers

Glencore-Xstrata delay merger to wait for Chinese nod

Paraguay set against Venezuela pact role

Taiwan, China agree to further bank investments

SOLAR DAILY
Researchers question evaluation methods for protected areas in the Amazon

Decreased Water Flow May be Trade-off for More Productive Forest

Middle ground between unlogged forest and intensively managed lands

Hunting for meat impacts on rainforest

SOLAR DAILY
China to launch high-res Earth-observation satellite

How hard is it to 'de-anonymize' cellphone data?

Wearable system can map difficult areas

A Closer Look at LDCM's First Scene

SOLAR DAILY
Imaging methodology reveals nano details not seen before

Glass-blowers at a nano scale

Nanoparticles show promise as inexpensive, durable and effective scintillators

Scientists develop innovative twists to DNA nanotechnology




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement