. GPS News .




.
TECH SPACE
Magnetic field researchers target 100-tesla goal
by Staff Writers
Los Alamos CA (SPX) Mar 28, 2012

The hundred-tesla level is roughly equivalent to 2 million times Earth's magnetic field.

Researchers at Los Alamos National Laboratory's biggest magnet facility have met the grand challenge of producing magnetic fields in excess of 100 tesla while conducting six different experiments. The hundred-tesla level is roughly equivalent to 2 million times Earth's magnetic field.

"This is our moon shot, we've worked toward this for a decade and a half," said Chuck Mielke, director of the Pulsed Field Facility at Los Alamos.

The team used the 100-tesla pulsed, multi-shot magnet, a combination of seven coils sets weighing nearly 18,000 pounds and powered by a massive 1,200-megajoule motor generator.

There are higher magnetic fields produced elsewhere, but the magnets that create such fields blow themselves to bits in the process. The system at Los Alamos is instead designed to work nondestructively, in the intense 100-tesla realm, on a regular basis. The Los Alamos facility is one of three campuses forming the National High Magnetic Field Laboratory (NHMFL).

Today's 100.75-tesla performance produced research results for scientific teams from Rutgers University, Ecole Nationale Superieure d'Ingenieurs de Caen (ENSICAEN), McMaster University, University of Puerto Rico, University of Minnesota, Cambridge University, University of British Columbia, and Oxford University. The science that we expect to come out varies with the experiment, but can be summarized as:

+ Quantum Phase transitions and new ultra high field magnetic states

+ Electronic Structure determination

+ Topologically protected states of matter

"Congratulations to the Los Alamos team and our collaborators," said LANL Director Charlie McMillan. "Their innovations and creativity are not only breaking barriers in science, but solving national problems in the process."

In recent experiments, said Mielke, "the new magnet has allowed our users and staff to pin down the upper critical field of a new form of superconductor, discover two new magnetically ordered states in a material that has eluded scientists for nearly 30 years, observe magneto-quantum oscillations in a high temperature superconductor to unprecedented resolution, determine a topological state of a new material, and discover a new form of magnetic ordering in an advanced magnetic material."

The LANL team set on August 18 last year a new world record for the strongest magnetic field ever delivered by a nondestructive magnet. The scientists achieved an enormous 97.4 tesla-a magnetic field nearly 100 times more powerful than the giant junkyard car-lifting magnets, and some 30 times stronger than the field delivered during a medical MRI scan.

That record was broken this morning as the team ramped up the big magnet again, reaching 98.35 T, with an eye toward the afternoon's 3-digit event.

Mielke said that since the team's latest foray into magnetic fields above 90 tesla, they've demonstrated that they can measure:

+ Upper critical fields of superconductors-radio frequency contactless conductivity

+ Quantum magnetic transitions-magnetic susceptibility

+ Electrical resistivity-magnetotransport

+ Optical spectroscopy-visible light transmission

+ Crystallographic length change-fiber-optic dilatometry

"Now, at 100 tesla, we can focusing our efforts to get multiple user experiments completed in single magnet runs on the big magnets since they are so oversubscribed. More than a dozen people are working together to make this happen here at the Laboratory," said Mielke.

The ability to create pulses of extremely high magnetic fields nondestructively provides researchers with an unprecedented tool for studying a range of scientific questions: from how materials behave under the influence of very high magnetic fields, to research into the quantum behavior of phase transitions in solids.

Researchers can explore extremes of low temperature and high magnetic field, which will contribute to our understanding of superconductivity, magnetic-field-induced phase transitions, and so-called quantum critical points, in which small changes in materials properties at very low temperature have dramatic effects on physical behavior. The magnet could also be used as a nanoscale microscope.

The Pulsed Field Facility at Los Alamos is one of three campuses of the National High Magnetic Field Laboratory, the other two being at Florida State University, Tallahassee (continuous fields, magnetic resonance, and general headquarters) and the University of Florida Gainesville (ultra-low temperatures at high magnetic fields). The NHMFL is sponsored primarily by the National Science Foundation, Division of Materials Research, with additional support from the State of Florida and the U.S. Department of Energy.

Related Links
Los Alamos National Laboratory
Space Technology News - Applications and Research




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TECH SPACE
Materials inspired by Mother Nature: A 1-pound boat that could float 1,000 pounds
San Diego CA (SPX) Mar 27, 2012
Combining the secrets that enable water striders to walk on water and give wood its lightness and great strength has yielded an amazing new material so buoyant that, in everyday terms, a boat made from 1 pound of the substance could carry five kitchen refrigerators, about 1,000 pounds. One of the lightest solid substances in the world, which is also sustainable, it was among the topics of ... read more


TECH SPACE
French village offers residents chickens to cut rubbish

An invasive Asian fly is taking over European fruit

U.K. lifts Chernobyl restrictions on sheep

Produce safety future focus of supermarkets, farmers and consumers

TECH SPACE
More energy efficient transistors through quantum tunneling

Solitary waves induce waveguide that can split light beams

Designer lights from the physics lab

Inner workings of magnets may lead to faster computers

TECH SPACE
Asia gets new budget airline eyeing Chinese flyers

South Africa, Singapore airlines fined for price-fixing

Cessna signs agreements with Chinese manufacturer

Aviation driving growth in Latin America

TECH SPACE
Anti-Iran lobby hits GM-Peugeot deal

China's Dongfeng Motor posts 4.6% profit fall

Three-cylinder cars coming to U.S.

Space foil helping to build safer cars

TECH SPACE
Outside View: Protectionism on the Right

BRICS summit shadowed by Tibet protests

US group: Lock China out of infrastructure deals

Chinese traders make Spain gateway to Europe

TECH SPACE
Indonesia land clearance 'wiping out' orangutans

Trace element plays major role in tropical forest nitrogen cycle

Tests New Tool to Guide Reintroduction of the American Chestnut

Electricity from trees

TECH SPACE
NASA GRACE Data Hit Big Apple on World Water Day

ESRI Geospatial Technology Promotes Local Food Systems in US

Spotting ancient sites, from space

Google opens Amazon wilds to armchair explorers

TECH SPACE
Diatom biosensor could shine light on future nanomaterials

'Buckliball' opens new avenue in design of foldable engineering structures

A shiny new tool for imaging biomolecules

Simple, cheap way to mass-produce graphene nanosheets


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement