GPS News  
STELLAR CHEMISTRY
Magnetar could have boosted explosion of extremely bright supernova
by Staff Writers
Tokyo, Japan (SPX) Mar 28, 2016


Artist impression of a magnetar boosting a super-luminous supernova and gamma-ray burst. Credit: Kavli IPMU

Calculations by scientists have found highly magnetized, rapidly spinning neutron stars called magnetars could explain the energy source behind two extremely unusual stellar explosions.

Stellar explosions known as supernovae usually shine a billion times brighter than the Sun. Super-luminous supernovae (SLSNe) are a relatively new and rare class of stellar explosions, 10 to 100 times brighter than normal supernovae. But the energy source of their super-luminosity, and explosion mechanisms are a mystery and remain controversial amongst scientists.

A group of researchers led by Melina Bersten, an Instituto de Astrofisica de La Plata Researcher and affiliate member of Kavli IPMU, and including Kavli IPMU Principal Investigator Ken'ichi Nomoto, tested a model that suggests that the energy to power the luminosity of two recently discovered SLSNe, SN 2011kl and ASASSN-15lh, is mainly due to the rotational energy lost by a newly born magnetar. They analyzed two recently discovered super-luminous supernovae: SN 2011kl and ASASSN-15lh.

"These supernovae can be found in very distant universe, thus possibly informing us the properties of the first stars of the universe," said Nomoto.

Interestingly, both explosions were found to be extreme cases of SLSNe. First, SN 2011kl was discovered in 2011 and is the first supernovae to have an ultra long gamma-ray burst that lasted several hours, whereas typical long-duration gamma-ray bursts fade in a matter of minutes.

The second, ASASSN-15lh, was discovered in 2015 and is possibly the most luminous and powerful explosion ever seen, more than 500 times brighter than normal supernovae. For more than a month its luminosity was 20 times brighter than the whole Milky Way galaxy.

The team performed numerical hydrodynamical calculations to explore the magnetar hypothesis, and found both SLSNe could be understood in the framework of magnetar-powered supernovae (see image 1).

In particular, for ASASSN-15lh, they were able to find a magnetar source with physically allowed properties of magnetic field strength and rotation period. The solution avoided the prohibited realm of neutro-star spins that would cause the object to breakup due to centrifugal forces.

"These two extreme super-luminous supernovae put to the test our knowledge of stellar explosions," said Bersten.

To confirm the team's calculations, further observations would need to be carried out when the material ejected by the supernova is expected to become thin. The most powerful telescopes, including the Hubble Space Telescope, will be required for this purpose. If correct, these observations will allow scientists to probe the inner part of an exploding object, and provide new insight on its origin, and evolution of stars in the Universe.

Research paper: The Unusual Super-Luminous Supernovae Sn 2011Kl And Asassn-15Lh The group's paper was published in The Astrophysical Journal Letters in January.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Kavli Institute for the Physics and Mathematics of the Universe
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Our sun could also be a superflare star
Aarhus C, Denmark (SPX) Mar 28, 2016
The Earth is often struck by solar eruptions. These eruptions consist of energetic particles that are hurled away from the Sun into space, where those directed towards Earth encounter the magnetic field around our planet. When these eruptions interact with Earth's magnetic field they cause beautiful auroras. A poetic phenomenon that reminds us, that our closest star is an unpredictable neighbor. ... read more


STELLAR CHEMISTRY
Study finds wide-reaching impact of nitrogen deposition on plants

ASU researcher improves crop performance with new biotechnology

One crop breeding cycle from starvation

Laser reveals water's secret life in soil

STELLAR CHEMISTRY
Taiwan's TSMC signs deal for $3 bn plant in China

New terahertz source could strengthen sensing applications

NIST's 'optomechanical transducer' links sound, light, radio waves

Unlocking the gates to quantum computing

STELLAR CHEMISTRY
UK defence chief says Qatar warplane deal 'on the table'

New material could make aircraft deicers a thing of the past

Mozambique debris 'almost certainly from MH370'

RAND Corp receives $231 Mln to plan fture of US Air Force

STELLAR CHEMISTRY
Newest Tesla electric will aim at middle market

US sues Volkswagen for deceptive 'clean diesel' campaign

US sues Volkswagen for deceptive 'clean diesel' campaign

US judge gives VW to April 21 for emissions fix plan

STELLAR CHEMISTRY
Protests in Prague as China's Xi signs economic partnership

China steel firm defaults after chairman found dead

Moscow aims to better economic ties to Finland

News 'micropayments' startup hits US market

STELLAR CHEMISTRY
Maximum sentences for killers of Costa Rica environmentalist

Desert mangroves are major source of carbon storage

Data from 1800s helps forest managers maintain healthy forest ecosystems

Poland approves logging Europe's last primeval forest

STELLAR CHEMISTRY
Fairy circles discovered in Australia by researchers

NASA Airborne Mission Looks At Fires and Cooling Atlantic Clouds Decks

Unravelling a geological mystery using lasers from space

Research on near-earth space to start with first launch from Vostochny

STELLAR CHEMISTRY
Nanolight at the edge

Nano-enhanced textiles clean themselves with light

Nature-inspired nanotubes that assemble themselves, with precision

CWRU researchers make biosensor 1 million times more sensitive









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.