Subscribe free to our newsletters via your
. GPS News .




SOLAR DAILY
Low-priced plastic photovoltaics
by Staff Writers
Washington DC (SPX) Oct 24, 2013


This is an image of the polymer blend morphology without (left) and with (right) nanowires. Credit: Imperial College/S. Wood and J. Bailey.

devices, which tap the power of the sun and convert it to electricity, offer a green - and potentially unlimited - alternative to fossil fuel use. So why haven't solar technologies been more widely adopted?

Quite simply, "they're too expensive," says Ji-Seon Kim, a senior lecturer in experimental solid-state physics at Imperial College London, who, along with her colleagues, has come up with a technology that might help bring the prices down.

The scientists describe their new approach to making cheaper, more efficient solar panels in a paper in The Journal of Chemical Physics, produced by AIP Publishing.

"To collect a lot of sunlight you need to cover a large area in solar panels, which is very expensive for traditional inorganic - usually silicon - photovoltaics," explains Kim. The high costs arise because traditional panels must be made from high purity crystals that require high temperatures and vacuum conditions to manufacture.

A cheaper solution is to construct the photovoltaic devices out of organic compounds - building what are essentially plastic solar cells. Organic semiconducting materials, and especially polymers, can be dissolved to make an ink and then simply "printed" in a very thin layer, some 100 billionths of a meter thick, over a large area.

"Covering a large area in plastic is much cheaper than covering it in silicon, and as a result the cost per Watt of electricity-generating capacity has the potential to be much lower," she says.

One major difficulty with doing this, however, is controlling the arrangement of polymer molecules within the thin layer. In their paper, Kim and colleagues describe a new method for exerting such control.

"We have developed an advanced structural probe technique to determine the molecular packing of two different polymers when they are mixed together," she says. By manipulating how the molecules of the two different polymers pack together, Kim and her colleagues created ordered pathways - or "nanowires" - along which electrical charges can more easily travel. This enables the solar cell to produce more electrical current, she said.

"Our work highlights the importance of the precise arrangement of polymer molecules in a polymer solar cell for it to work efficiently," says Kim, who expects polymer solar cells to reach the commercial market within 5 to 10 years.

The article, "Understanding the Relationship between Molecular Order and Charge Transport Properties in Conjugated Polymer Based Organic Blend Photovoltaic Devices" by Sebastian Wood, Jong Soo Kim, David T. James, Wing C. Tsoi, Craig E. Murphy and Ji-Seon Kim appears in The Journal of Chemical Physics.

.


Related Links
American Institute of Physics
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR DAILY
Simpler Manufacturing Cuts Cost Of Organic-Inorganic Hybrid Solarcells
Singapore (SPX) Oct 24, 2013
In the near future, solar panels will not only be more efficient but also a lot cheaper and affordable for everyone, thanks to research by Nanyang Technological University (NTU) scientists. This next generation solar cell, made from organic-inorganic hybrid perovskite materials, is about five times cheaper than current thin-film solar cells, due to a simpler solution-based manufacturing pr ... read more


SOLAR DAILY
Small changes in ag practices could reduce produce-borne illness

Veterinary scientists track the origin of a deadly emerging pig virus in US

Vetch cover crop, fertilizer practices recommended for organic zucchini

Outside View: China's ownership of an iconic American food company

SOLAR DAILY
JQI team 'gets the edge' on photon transport in silicon

Atomically Thin Device Promises New Class of Electronics

Tiny Sensors Put the Squeeze on Light

Quantum conductors benefit from growth on smooth foundations

SOLAR DAILY
Boeing, Lockheed team up for new US Air Force bomber

The Effects of Space Weather on Aviation

Space ballooning: 20-mile-high flights offered for $75K

Boeing Begins Assembling 3rd KC-46A Tanker Aircraft

SOLAR DAILY
Proposed car system could alleviate unexplained traffic jams

China's Dongfeng mulls 'rationality' of Peugeot move

Eight U.S. states in agreement to promote zero-emission vehicles

Eight states to aim for 3.3 million zero-emission cars

SOLAR DAILY
World Bank: Singapore, Hong Kong best for business

Greenland awards first big mining exploitation license

US firms lukewarm on doing business in China: lobby

Brazilians protest over loss of textile jobs to China

SOLAR DAILY
Gold mining is ravaging Peruvian Amazon: study

Working wood locally in Congo basin poses challenge

Gum leaves rich in lil' gold nuggets

Risk of Amazon rainforest dieback is higher than IPCC projects

SOLAR DAILY
Hi-tech aqueduct explorers map Rome's 'final frontier'

NASA satellites help track volcanic ash affecting air travel

New evidence on lightning strikes

How Earth's rotation affects vortices in nature

SOLAR DAILY
Scientists untangle nanotubes to release their potential in the electronics industry

Nano-Cone Textures Generate Extremely "Robust" Water-Repellent Surfaces

Newly discovered mechanism propels micromotors

Densest array of carbon nanotubes grown to date




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement