Subscribe free to our newsletters via your
. GPS News .




TECH SPACE
Lifelike cooling for sunbaked windows
by Staff Writers
Boston MA (SPX) Jul 31, 2013


A specially fabricated sheet of silicone rubber (PDMS) creates a network of channels that function as an artificial circulatory system. Water flows through those channels on hot, sunny days, which should help keep windows -- and the air inside buildings -- cool. Image courtesy Wyss Institute.

Sun-drenched rooms make for happy residents, but large glass windows also bring higher air-conditioning bills. Now a bioinspired microfluidic circulatory system for windows developed by researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University could save energy and cut cooling costs dramatically -- while letting in just as much sunlight.

The same circulatory system could also cool rooftop solar panels, allowing them to generate electricity more efficiently, the researchers report in the July 29 online edition of Solar Energy Materials and Solar Cells.

The circulatory system functions like those of living animals, including humans, which contain an extensive network of tiny blood vessels near the surface of the skin that dilate when we are hot. This allows more blood to circulate, which promotes heat transfer through our skin to the surrounding air.

Similarly, the new window-cooling system contains an extensive network of ultrathin channels near the "skin" of the window -- the pane -- through which water can be pumped when the window is hot. The channels consist of long, narrow troughs that are molded into a thin sheet of clear silicone rubber that, when stretched over a flat pane of glass, create sealed channels.

"The water comes in at a low temperature, runs next to a hot window, and carries that thermal energy away," said Benjamin Hatton, Ph.D., lead author of the study. Hatton, who is now an assistant professor of materials science and engineering at the University of Toronto, was a member of the Advanced Technology Team at the Wyss Institute.

He worked on the Adaptive Material Technologies platform led by Joanna Aizenberg, Ph.D., who is a Core Faculty member of the Wyss Institute and the Amy Smith Berylson Professor of Materials Science at Harvard School of Engineering and Applied Sciences.

Today's insulation and construction methods do a good job keeping heat from leaking through walls, but heat transfer through glass windows remains one of the major stumbling blocks to energy-efficient buildings. In large part, that is because the molecules in glass absorb the sun's infrared light, heating the window, which heats the air inside the building significantly.

The idea to cool glass windows when they get hot emerged from work on microfluidics by Don Ingber, M.D., Ph.D., the Wyss Institute's Founding Director, and his team working on biomimetic microsystems. Ingber is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Boston Children's Hospital, and Professor of Bioengineering at Harvard School of Engineering and Applied Sciences.

Microfluidic devices circulate fluids through tiny, ultrathin channels and are typically used to build small devices for laboratory research and clinical diagnosis. In contrast, Ingber's team developed an innovative method to build large-scale microfluidic devices for organ-on-chip applications.

They first use a vinyl cutter -- a computer-controlled device that cuts intricate patterns on large vinyl sheets -- to create a plastic mold. Then they pour liquid silicone rubber into the mold, let it solidify, and remove it, which creates the thin sheet imbued with long, narrow troughs.

When Ingber's microfluidics team met with Aizenberg's adaptive materials team in cross-platform meetings, the idea emerged that this microfluidics technology could be applied to building materials to control heat transfer, much like capillary blood flow warms the feet of Antarctic penguins as they wait for their mates near the South Pole.

Hatton and the Wyss Institute team then created and tested a four-inch-square microfluidic windowpane. They found that when these channels were filled with water, they were also transparent to the eye -- which is just what people want in a window, Hatton said.

They then used a heat lamp to heat a pane with this vasculature to 100 F -- as hot as a window might get on a sunny summer day. Using a special infrared camera, they showed that the circulatory system could readily cool the pane.

The Wyss Institute team then worked with Matthew Hancock, an applied mathematician at the Broad Institute in Cambridge, Mass., who developed a mathematical model that predicts how the circulatory system would perform on normal-size windows. Pumping just half a soda can's worth of water through the window's circulatory system would cool a full-size window pane by a full 8 C (14 F), they calculated.

The energy needed to pump water would be far less than the heat energy the water absorbed. This suggested that installing the cooled windows throughout a building would generate a big net win.

"The idea of using nature's lesson to create kind of a living skin on a building is a very important and promising direction for how buildings should and will be constructed in the future," said Chuck Hoberman, an award-winning U.S. designer, expert in adaptive architecture, and Wyss Institute Visiting Scholar.

"Our new window technology marries advances in microfluidics with creative thinking about adaptive architecture, and it's the sort of cross-disciplinary research that the Wyss Institute was designed to foster," Ingber said.

"We are optimistic that microfluidic windows will go a long way toward helping us cool our homes and commercial buildings more efficiently."

Next, the researchers plan to team up with architecture researchers to meld their mathematical model with existing architectural energy-modeling software to see how much energy microfluidic windows would save if installed over an entire building.

This work was funded by the Wyss Institute. In addition to Hatton, Aizenberg, Ingber and Hancock, the research team included: Ian Wheeldon, Ph.D., a former Wyss postdoctoral researcher who's currently an assistant professor in the department of chemical and environmental engineering at the University of California, Riverside, and Matthias Kolle, Ph.D., a postdoctoral fellow on Aizenberg's team.

.


Related Links
Wyss Institute for Biologically Inspired Engineering at Harvard University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Superfluid turbulence through the lens of black holes
Boston MA (SPX) Jul 29, 2013
A superfluid moves like a completely frictionless liquid, seemingly able to propel itself without any hindrance from gravity or surface tension. The physics underlying these materials - which appear to defy the conventional laws of physics - has fascinated scientists for decades. Think of the assassin T-1000 in the movie "Terminator 2: Judgment Day" - a robotic shape-shifter made of liquid ... read more


TECH SPACE
Japan to lift GM-linked ban on US wheat imports

Fat digestibility in pigs study looks at oils in soybeans, corn co-products

Research team collaborate to save the bacon

France promises Malaysia no palm oil 'discrimination'

TECH SPACE
Broadband photodetector for polarized light

Intel profits slide as chipmaker repositions

NIST shows how to make a compact frequency comb in minutes

New analytical methodology can guide electrode optimization

TECH SPACE
S. Korea extends bidding for fighter jets

France confident about delayed Rafale sale to India

US suspends delivery of F-16s to Egypt: Pentagon

Choosing a wave could accelerate airplane maintenance

TECH SPACE
BMW takes 'great leap forward' into electric car market

Hydrogen cars quickened by Copenhagen chemists

Toyota, Ford end hybrid partnership

LADWP Officials Announce Expanded Electric Vehicle Program

TECH SPACE
Small Indian retailer locked in trademark fight with Gap

Chinese workers strike over takeover of US firm

China owes Hollywood millions after halting payment for films

Asia A-listers take their seat on fashion front row

TECH SPACE
China passes laws to protect country's rare and ancient trees

Mini-monsters of the forest floor

Computer can infer rules of the forest

Boreal Forests in Alaska Becoming More Flammable

TECH SPACE
NASA's Van Allen Probes Discover Particle Accelerator in the Heart of Earth's Radiation Belts

Seeing Photosynthesis from Space: NASA Scientists Use Satellites to Measure Plant Health

First high-resolution national carbon map - Panama

NASA Releases Images of Earth Taken by Distant Spacecraft

TECH SPACE
New NIST nanoscale indenter takes novel approach to measuring surface properties

Desktop printing at the nano level

New nanoscale imaging method finds application in plasmonics

York Nanocentre researchers image individual atoms in a living catalytic reaction




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement