Subscribe free to our newsletters via your
. GPS News .




TECTONICS
Landslides linked to plate tectonics create the steepest mountain terrain
by Staff Writers
Seattle WA (SPX) Jun 01, 2012


The Landsat satellite image at left shows a huge lake on the Tsangpo River behind a dam created by a landslide (in red, lower right of the lake) in early 2000. The image at right shows the river following a catastrophic breach of the dam in June 2000. Credit: U.S. Geological Survey/NASA.

Some of the steepest mountain slopes in the world got that way because of the interplay between terrain uplift associated with plate tectonics and powerful streams cutting into hillsides, leading to erosion in the form of large landslides, new research shows.

The work, presented online May 27 in Nature Geoscience, shows that once the angle of a slope exceeds 30 degrees - whether from uplift, a rushing stream carving away the bottom of the slope or a combination of the two - landslide erosion increases significantly until the hillside stabilizes.

"I think the formation of these landscapes could apply to any steep mountain terrain in the world," said lead author Isaac Larsen, a University of Washington doctoral student in Earth and space sciences.

The study, co-authored by David Montgomery, a UW professor of Earth and space sciences and Larsen's doctoral adviser, focuses on landslide erosion along rivers in the eastern Himalaya region of southern Asia.

The scientists studied images of more than 15,000 landslides before 1974 and more than 550 more between 1974 and 2007. The data came from satellite imagery, including high-resolution spy satellite photography that was declassified in the 1990s.

They found that small increases in slope angle above about 30 degrees translated into large increases in landslide erosion as the stress of gravity exceeded the strength of the bedrock.

"Interestingly, 35 degrees is about the same angle that will form if sand or other coarse granular material is poured into a pile," Larsen said. "Sand is non-cohesive, whereas intact bedrock can have high cohesion and should support steeper slopes.

"The implication is that bedrock in tectonically active mountains is so extensively fractured that in some ways it behaves like a sand pile. Removal of sand at the base of the pile will cause miniature landslides, just as erosion of material at the base of hill slopes in real mountain ranges will lead to landslides."

The researchers looked closely at an area of the 150-mile Tsangpo Gorge in southeast Tibet, possibly the deepest gorge in the world, downstream from the Yarlung Tsangpo River where the Po Tsangpo River plunges more than 6,500 feet, about 1.25 miles. It then becomes the Brahmaputra River before flowing through the Ganges River delta and into the Bay of Bengal.

The scientists found that within the steep gorge, the rapidly flowing water can scour soil from the bases, or toes, of slopes, leaving exposed bedrock and an increased slope angle that triggers landslides to stabilize the slopes.

From 1974 through 2007, erosion rates reached more than a half-inch per year along some 6-mile stretches of the river within the gorge, and throughout that active landslide region erosion ranged from 0.15 to 0.8 inch per year. Areas with less tectonic and landslide activity experienced erosion rates of less than 0.15 inch a year.

Images showed that a huge landslide in early 2000 created a gigantic dam on a stretch of the Po Tsangpo. The dam failed catastrophically in June of that year, and the ensuing flood caused a number of fatalities and much property damage downstream.

That event illustrates the processes at work in steep mountain terrain, but the processes happen on a faster timescale in the Tsangpo Gorge than in other steep mountain regions of the world and so are more easily verified.

"We've been able to document the role that landslides play in the Tsangpo Gorge," Larsen said. "It explains how steep mountain topography evolves over time."

The work was financed by NASA, the Geological Society of America, Sigma Xi (the Scientific Research Society) and the UW Quaternary Research Center and Department of Earth and Space Sciences

.


Related Links
University of Washington
Tectonic Science and News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECTONICS
Double quake highlights Italy's seismic perils
Paris (AFP) May 29, 2012
Two killer earthquakes that struck northeastern Italy in nine days have shed light on the brutal but complex seismic forces that grip the Italian peninsula, scientists say. Brian Baptie, a seismologist with the British Geological Survey (BGS), said the worst earthquakes in Italy occurred in the south of the country, which lies close to where one of Earth's tectonic plates is sliding under an ... read more


TECTONICS
Livestock industry beefs up Illinois economy

Time is ticking for some crop's wild relatives

Tomato genome becomes fully sequenced

Australia and China eye joint farming plan

TECTONICS
The first chemical circuit developed

Copper-nickel nanowires could be perfect fit for printable electronics

Japan's Renesas ups chip outsourcing to Taiwan giant

New silicon memory chip developed

TECTONICS
Louis Gallois hands EADS reins to Tom Enders

Boeing Delivers First EA-18G Growler Featuring Bharat Electronics Limited Cockpit Subassembly

Flapping protective wings increase lift

Russia, India to produce transports

TECTONICS
Volkswagen targets China in group shakeup

Japan's vehicle output soars 174% in April

Japan's April auto output soars in year after quake

Ferrari recalls 56 cars in China: state media

TECTONICS
EU, China edge closer to hi-tech trade war

Australian PM: miners don't own minerals

U.K., Spain work on S. America investments

Japan's NEC buys Australian IT firms

TECTONICS
New study reports rise in community land rights in tropical forests; most laws unenforced

Greenpeace says KFC boxes destroy Indonesia forests

Beetle-infested Pine Trees Contribute to Air Pollution and Haze in Forests

Beetle-infested pine trees contribute more to air pollution and haze in forests

TECTONICS
CryoSat goes to sea

S Korea to develop geostationary satellite for environmental monitoring

LiDAR Technology Reveals Faults Near Lake Tahoe

Satellite maps ocean floor

TECTONICS
Coatings with nanoparticles that interact with sunlight and eliminate contaminants are developed

Wyss Institute develops nanodevice manufacturing strategy using DNA 'building blocks'

First direct observation of oriented attachment in nanocrystal growth

Stunning image of smallest possible 5 rings




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement