Subscribe free to our newsletters via your
. GPS News .




FARM NEWS
LEDs shine in bedding plant production study
by Staff Writers
West Lafayette IN (SPX) Jul 23, 2014


Light-emitting diodes (LEDs) can offer growers benefits such as higher energy efficiencies and a longer operating life.

Growers of annual bedding plant seedlings or plugs work to produce compact, fully rooted transplants with a large stem diameter and high root dry mass--qualities that make seedlings less susceptible to damage during shipping and transplant.

To achieve these desirable qualities, greenhouse growers in northern latitudes must rely on supplemental lighting from high-pressure sodium lamps during winter months. A new study shows that light-emitting diodes (LEDs) can give greenhouse growers other lighting options that produce favorable results.

Previously, the only way for producers to substantially increase ambient greenhouse was to provide supplemental lighting from high-intensity discharge lights--most commonly high-pressure sodium (HPS) lamps. HPS lamps have drawbacks, however; they are only about 25% to 30% efficient, and have limited lifespans.

Another disadvantage is the high levels of radiant heat energy produced by high-pressure sodium lamps; up to 75% of the energy from HPS lamps that is not converted to light is emitted as radiant heat energy, causing the surface of the lamps to reach temperatures as high as 450 C. To prevent leaves from scorching from exposure to the high heat, plants must be separated from the HPS lamps.

Light-emitting diodes (LEDs) can offer growers benefits such as higher energy efficiencies and a longer operating life.

To determine whether the use of narrow-spectra high-intensity LEDs is can be a practicable supplemental lighting source for greenhouse grown annual bedding plant seedlings, researchers Wesley Randall and Roberto Lopez from Purdue University designed a series of lighting experiments on plugs of Antirrhinum, Catharanthus, Celosia, Impatiens, Pelargonium, Petunia, Tagetes, Salvia, and Viola.

Results showed that the height of Catharanthus, Celosia, Impatiens, Petunia, Tagetes, Salvia, and Viola was 31%, 29%, 31%, 55%, 20%, 9%, and 35% shorter, respectively, for seedlings grown under 85:15 red:blue LEDs compared with those grown under high-pressure sodium lamps.

Stem caliper of Antirrhinum, Pelargonium, and Tagetes was 16%, 8%, and 13% larger, respectively, for seedlings grown under the 85:15 red:blue LEDs compared with seedlings grown under HPS lamps.

The quality index was significantly higher for Petunia, Salvia, and Viola under 85:15, 70:30, and 100:0 red:blue LEDs than under HPS lamps, respectively. Overall, the results indicate that seedling quality for the majority of the species tested under supplemental light LEDs providing both red and blue light was similar or higher than those grown under high-pressure sodium lamps.

"Our results indicate that providing supplemental lighting from LEDs or high-pressure sodium lamps has a positive influence on seedling root dry mass, height, and stem caliper leading to high-quality bedding plant seedlings when solar light is limited," Lopez and Randall noted.

"A light ratio of 85:15 red:blue light could be a good combination for greenhouse LED supplemental lighting of bedding plant plugs. However, it is important to remember that although blue LEDs have a higher electrical conversion efficiency compared with red LEDs, blue light is a higher energy light, which increases energy consumption as higher proportions of blue are used."

.


Related Links
American Society for Horticultural Science
Farming Today - Suppliers and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FARM NEWS
Genetic blueprint of bread wheat genome unveiled
Washington DC (SPX) Jul 21, 2014
The genetic blueprint is an invaluable resource to plant science researchers and breeders. For the first time, they have at their disposal a set of tools enabling them to rapidly locate specific genes on individual wheat chromosomes throughout the genome. Jorge Dubcovsky, Professor at the University of California Davis, USA, says that these results "have been a fantastic resource for our laborat ... read more


FARM NEWS
Beef's environmental costs far outweigh poultry, pork

McDonald's earnings edge lower on tepid gobal sales

China meat scandal spreads to Japan in Chicken McNuggets

New study shows how existing cropland could feed billions more

FARM NEWS
Technique simplifies the creation of high-tech crystals

Rice's silicon oxide memories catch manufacturers' eye

The World's First Photonic Router

Negar Sani solved the mystery of the printed diode

FARM NEWS
In air tragedy, lightning strikes twice for Malaysia

Airbus supplying more aircraft to Egyptian Air Force

Lockheed opening new office in Britain

Brazil's Embraer sells 60 commercial planes to China

FARM NEWS
Plus-sized parking spaces for Chinese women drivers

Using LED lighting to reduce streetlight glare

Economic development not the only influence on personal car use

Cheap and easy software provides highly accurate real-time data on traffic

FARM NEWS
China's Xi eyes increased investment in Cuba

Failed Marx letter sale disappoints Chinese capitalists

Volvo Trucks mulls impact of US fine on marine engines

China's Xi signs Venezuela resource deals on LatAm blitz

FARM NEWS
Borneo deforested 30 percent over past 40 years

Reducing Travel Assisted Firewood Insect Spread

Walmart store planned for endangered Florida forest

Hunting gives deer-damaged forests a shot at recovery

FARM NEWS
NASA's Van Allen Probes Show How to Accelerate Electrons

Ten-Year Endeavor: NASA's Aura Tracks Pollutants

Hyperspec Sensors Target Vegetation Fluorescence

New Satellite Imagery Now Available for ArcGIS Online Users Worldwide

FARM NEWS
NIST shows ultrasonically propelled nanorods spin dizzyingly fast

Low cost technique improves properties of nanomaterials

Researchers demonstrate novel, tunable nanoantennas

Illinois study advances limits for ultrafast nano-devices




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.