GPS News  
TIME AND SPACE
Kiel physicists achieve hitherto most accurate description of highly excited electrons
by Staff Writers
Kiel, Germany (SPX) Jun 22, 2018

file illustration only

It is the "drosophila" of modern physics: the uniform electron gas. Just as the fruit fly is used to describe the principles of genetics this model of a gas can be used to investigate important characteristics of electrons.

This model also known as jellium describes the properties of electrons in metals, in molecules and in clusters of atoms. Further, electrons determine the behavior of stars and planets and the structure of Earth's core.

Here they are subject to extreme conditions: Temperatures of several thousands to millions degree celsius and pressures compressing the electrons up to a thousand times stronger compared to a metal. Similarly extreme conditions are nowadays also realized in some laboratories for example with the help of high-intensity lasers or free electron lasers, such as the XFEL at Deutsches Elektronen-Synchrotron DESY in Hamburg.

Here materials are investigated by heating them up, compressing or highly exciting them. After several years of intense research a team of the Institute of Theoretical Physics and Astrophysics (ITAP) at Kiel University succeeded in describing the thermodynamic properties of electrons under extreme conditions. They summarized their results in an article in the current edition of the journal Physics Reports.

For over 60 years, physicists worldwide have been trying to understand and predict the behavior of the electrons. A large number of different models of the uniform electron gas has emerged.

These are used as input for more complex theories like density functional theory, which has been established as the bedrock of the description of atoms, molecules, and solids. Unfortunately, the accuracy of the underlying models had remained unclear for a long time.

Over the last five years, scientists from the ITAP led by Prof. Michael Bonitz achieved a breakthrough together with colleagues from the Imperial College London (Great Britain) and from the Los Alamos National Laboratory (USA).

They developed two novel computer simulation techniques the combination of which allowed them to predict the behavior of electrons for all relevant conditions. These Quantum Monte Carlo Simulations are based on probability theory and are the key to successfully tackling the present extremely high-dimensional complex problem numerically.

"Our results are the first exact data concerning the thermodynamic properties of electrons under extreme conditions. They allow us to benchmark and improve all previous models for the first time", Bonitz looks ahead.

Their calculated results are freely available to researchers around the globe via the code "LDA_XC_GDSMFB", which has been included into the widespread density functional theory library "libxc".

Research Report: The Uniform Electron Gas at Warm Dense Matter Conditions


Related Links
Kiel University
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Turning entanglement upside down
Innsbruck, Austria (SPX) Jun 19, 2018
Quantum entanglement forms the heart of the second quantum revolution: it is a key characteristic used to understand forms of quantum matter, and a key resource for present and future quantum technologies. Physically, entangled particles cannot be described as individual particles with defined states, but only as a single system. Even when the particles are separated by a large distance, changes in one particle also instantaneously affect the other particle(s). The entanglement of individual parti ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Japan, SKorea ban Canadian wheat imports over bioengineered plants

Warmer climate will dramatically increase the volatility of global corn crops

US soybean prices tumble amid trade fight with Beijing

Fashion retailer ASOS bans silk, cashmere, mohair

TIME AND SPACE
Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

Molecular switch will facilitate the development of pioneering electro-optical devices

Spintronics: Controlling magnetic spin with electric fields

Designer materials with completely random structures might enable quantum computing

TIME AND SPACE
French fighter jets go quiet for school exams

Pentagon awards Lockheed contract for F-35 spares, support

UK jet expert held over 'Chinese plot for military secrets'

Boeing awarded $1.5B for Hornet, Growler upgrades

TIME AND SPACE
Electric scooter-sharing moves into the fast lane

Daimler cuts profit forecast, blaming US-China tariffs

Audi boss arrested in diesel probe

Fleet of autonomous boats could service cities to reduce road traffic

TIME AND SPACE
US lawmakers hammer commerce secretary Ross over trade

China's Xiaomi announces pioneering listing plan

China's Xi denounces 'protectionism, isolationism and populism'

White House: China has 'much more to lose' in trade dispute

TIME AND SPACE
'Shocking' die-off of Africa's oldest baobabs

New research finds tall and older Amazonian forests more resistant to droughts

Zangbeto: voodoo saviour of Benin's mangroves

New technique reveals details of forest fire recovery

TIME AND SPACE
New method makes weather forecasts right as rain

UCI scientists find new teleconnection for early and accurate precipitation prediction

Thailand to buy Airbus satellite as junta chief visits France

MOF material offers selective, reversible and repeatable capture of toxic atmospheric gas

TIME AND SPACE
Squeezing light at the nanoscale

A new way to measure energy in microscopic machines

AI-based method could speed development of specialized nanoparticles

Researchers use magnets to move tiny DNA-based nano-devices









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.