GPS News  
SPACE SCOPES
Kick-off for a new era of precision astronomy
by Staff Writers
Garching, Germany (SPX) Oct 08, 2015


The MICADO instrument will be developed and built by a consortium of European institutes in collaboration with ESO. MICADO will be the first dedicated imaging camera for the giant new telescope E-ELT and will take the power of adaptive optics to the next level. This picture shows how the instrument will look when installed on the telescope. Image courtesy ESO/MICADO consortium.

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna.

Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement. As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared wavelengths.

MICADO is the Multi-AO Imaging Camera for Deep Observations, which has been designed to work on the 39-m European Extremely Large Telescope (E-ELT). This revolutionary telescope will be the largest optical/near-infrared telescope in the world, gathering about 15 times more light than the largest optical telescopes existing today.

The MICADO camera will provide the capability for diffraction-limited imaging at near-infrared wavelengths, taking the power of adaptive optics to the next level. To correct for distortions due to the Earth's atmosphere, MICADO is optimized to make use of adaptive optics (AO): a simple single conjugate AO mode (SCAO) for correction of individual targets and a powerful multi-conjugate AO mode provided by the MAORY (Multi-conjugate Adaptive Optics RelaY) instrument to obtain sharp images over a wide-field of view.

The key capabilities of MICADO are matched to the unique features of the new telescope, and will lead to dramatic discoveries of new or unexplored astrophysical phenomena. To name but a few: Its high sensitivity will allow it to detect the faintest stars and furthest galaxies. Its unprecedented spatial resolution will reveal structures in nebulae and galaxies in detail far beyond what is currently possible.

For instance, by resolving stellar populations in distant galaxies their star formation history and evolution can be studied. And with the superb astrometric precision achieved by MICADO, many astronomical objects will no longer be static - they will become dynamic.

Measuring the tiny movements of stars will reveal the presence of otherwise hidden black holes in star clusters, and tracking the motions of star clusters will lead to new insights about how our Milky Way formed. In addition, MICADO includes a special mode that will allow it to directly observe and characterize extrasolar planets, and another that enables it to take spectra of compact objects.

"It's an incredibly exciting prospect, the measurements we'll be able to make with our camera and this giant future telescope," says Ric Davies, the Principal Investigator at MPE. "But this is also a very challenging project, and I am glad to have such a capable and enthusiastic team."

The MICADO instrument will be developed and built by a consortium of European institutes in collaboration with ESO. All partners have a strong tradition of working together to design and build world-class optical and infrared instrumentation. The project is expected to last nearly 10 years from the beginning of the current design phase to the end of commissioning, with the first light of both the E-ELT and MICADO planned for 2024.

As the lead institute, MPE is responsible for the overall project management and system engineering, and represents the consortium towards ESO. In addition, the team at MPE takes the lead in the developing and constructing the MICADO cryostat and the cold optics.

As an instrument for infrared wavelengths, the whole MICADO camera has to be cooled with liquid nitrogen to a temperature of about -196 Celsius - otherwise it would only "see" itself. This means that also the optics inside the cryostat, i.e. the mirrors and lenses guiding the light from the telescope to the actual detectors has to work in this cold environment, posing challenges on both material and positioning.

ESO supports the development of the MICADO instrument as an associate consortium member. It is responsible for two key areas: development and procurement of the science detector systems and the design of the adaptive optics wave front sensing and guide camera system with its associated real-time computer. Both activities are carried by ESO for all E-ELT instrumentation projects. In addition ESO is responsible for and manages the crucial interface between the MICADO science instrument and the multi-conjugate adaptive optics instrument MAORY.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Max Planck Institute for extraterrestrial Physics
Space Telescope News and Technology at Skynightly.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SPACE SCOPES
Launch Of Astrosat: First Indian Astronomy Satellite
Sriharikota, India (SPX) Sep 29, 2015
The first Indian astronomy satellite Astrosat (http://astrosat.iucaa.in) was launched on 28 September 2015 by the Indian Space Research Organisation (ISRO) from Sriharikota on a PSLV (Polar Satellite Launch Vehicle) rocket. Astrosat has unprecedented capability to simultaneously observe cosmic objects in visible light, the ultraviolet waveband and the entire X-ray waveband from very low energy t ... read more


SPACE SCOPES
Plant pest reprograms the roots

Tillage timing influences nitrogen availability and loss on organic farms

Climate-linked insurance a boon for poor farmers

Researchers find key link in understanding agriculture pests

SPACE SCOPES
Liquid cooling moves onto the chip for denser electronics

Graphene teams up with 2D crystals for faster data communications

Nanoscale photodetector could boost capacity of photonic circuits

New way of retaining quantum memories stored in light

SPACE SCOPES
S-97 Raider helicopter to be displayed at AUSA expo

Lockheed Martin brings F-16V to Indonesia

F-35 ejection seats raise worries on Capitol Hill

Northrop Grumman produces center fuselage for Japanese F-35

SPACE SCOPES
Uber says will expand service to 100 Chinese cities

Scandal-hit VW needs more than a year to fix all cars

Could candle soot power electric vehicles

Toyota unveils self-driving car

SPACE SCOPES
Amazon opens online shop for handmade goods

Japan's Abe hails new trade era, hopes China will join pact

Rare grey pearls fetch $5.27 million in Hong Kong auction

WageSpot app pulls back curtain on employee pay

SPACE SCOPES
Broadleaf trees show reduced sensitivity to global warming

Study reveals answers for managing Guam's threatened native trees

Large trees - key climate influencers - die first in drought

NASA/USGS Mission Helps Answer: What Is a Forest

SPACE SCOPES
New study indicates Earth's inner core was formed 1-1.5 billion years ago

China launches commercial remote-sensing satellites

Indonesia launches indigenous satellite

SMOS meets ocean monsters

SPACE SCOPES
Pirouetting in the spotlight

Nanocellulose materials by design

Smaller is better for nanotube analysis

Scientists build wrench 1.7 nanometers wide









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.