Subscribe free to our newsletters via your
. GPS News .




TECH SPACE
Japan researchers target 3D-printed body parts
By Miwa SUZUKI
Tokyo (AFP) Jan 16, 2015


Japanese scientists say they are on their way to being able to create custom-made skin, bone and joints using a 3D printer.

Several groups of researchers around the world have developed small masses of tissue for implants, but now they are looking to take the next step and make them functional.

Tsuyoshi Takato, a professor at the University of Tokyo Hospital, said his team had been working to create "a next-generation bio 3D printer", which would build up thin layers of biomaterials to form custom-made parts.

His team combines stem cells -- the proto-cells that are able to develop into any body part -- and proteins that trigger growth, as well as synthetic substance similar to human collagen.

Using a 3D printer, they are working on "mimicking the structure of organs" -- such as the hard surface and spongy inside for bones, Takato said.

In just a few hours, the printer crafts an implant using data from a Computer Tomography (CT) scan.

These implants can fit neatly into place in the body, and can quickly become assimilated by real tissue and other organs in the patient, the plastic surgeon said.

"We usually take cartilage or bone from the patient's own body (for regular implants), but these custom-made implants will mean not having to remove source material," Takato said.

The technology could also offer hope for children born with bone or cartilage problems, for whom regular synthetic implants are no good because of the rate of their body's growth.

The main hurdle was the heat generated by conventional 3D printers, which damages living cells and protein.

"We haven't fully worked out how to avoid heat denaturation but we already have some models and are exploring which offers the most efficient method," he told AFP.

The artificial protein Takato and his team use was developed by Fujifilm, which has been studying collagen used in photographic films.

Since it is modelled on human collagen and does not derive from animals, it can be easily assimilated in human bodies, reducing the risk of infections such as mad-cow disease.

Takato said the team aims to start clinical tests of 3D-printed skin in three years and then proceed to bones, cartilages and joints.

Researchers say their previous project on the custom-made "CT-Bone", developed with Tokyo-based firm Next 21 and governmental institutions, gave a hint to this latest study.

That technique uses calcium phosphate, the substance that makes up real bones, but does not contain stem cells.

CT-Bone implants are inserted into broken bones, or places where the bone is missing, to act as a scaffolding for new bone growth.

That new growth can overtake the implant after two years, with the host bone serving as an incubator.

Animal tests have suggested regeneration could be even quicker for implants that use collagens, stem cells and growth stimulus, Takato said.

Japanese medical authorities are expected to grant approval for putting CT-Bone to practical use this year.

mis/hg/erf

Fujifilm


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
3D printing could revolutionise war and foreign policy
Paris (AFP) Jan 05, 2015
3D printing will revolutionise war and foreign policy, say experts, not only by making possible incredible new designs but by turning the defence industry - and possibly the entire global economy - on its head. For many, 3D printing still looks like a gimmick, used for printing useless plastic figurines and not much else. But with key patents running out this year, new printers that u ... read more


TECH SPACE
Transgenic crops: Multiple toxins not a panacea for pest control

Antiquity of dairying on Emerald Isle revealed

More birds culled as Taiwan battles worst avian flu in 10 years

China's aquaculture sector could rebalance global fish supplies

TECH SPACE
Solving an organic semiconductor mystery

New laser for computer chips

Laser-induced graphene 'super' for electronics

Toward quantum chips

TECH SPACE
Switzerland restricts operations of F-5E aircraft

How prepared is your pilot to deal with an emergency?

Singapore navy finds main body of crashed AirAsia jet

Philippines buying C-130s from U.S. for security, disaster relief

TECH SPACE
Peugeot sales power ahead; China now biggest market

Congestion expected after Toyota green car orders soar

China taxi booking app raises $600 mn for expansion

From Rovers to Self-Driving Cars

TECH SPACE
Japan, Thai firms invest $10.4 billion in China's Citic

China outbound investment surges past $100 bn in 2014: govt

China to investigate state-owned enterprises: govt

Silicon Valley firms ink settlement in non-poaching case

TECH SPACE
New restoration focus for western dry forests

Gold mining devours S.American forest land: study

Salvaging the ecosystem after salvage logging

NASA Finds Good News on Forests and Carbon Dioxide

TECH SPACE
Airbus Defence and Space, TerraNIS and ARTAL Technologies join forces

All instruments for GOES-R now integrated with spacecraft

NASA Satellite Set to Get the Dirt on Soil Moisture

First satellite visible imagery of FY-2G successfully acquired

TECH SPACE
Revealing the inner workings of a molecular motor

New technology focuses diffuse light inside living tissue

Mysteries of 'molecular machines' revealed

Dartmouth researchers create 'green' process to reduce molecular switching waste




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.