Subscribe free to our newsletters via your
. GPS News .




SOLAR SCIENCE
It's Always Sunny in Caltech Lab
by Katie Neith
Pasadena CA (SPX) Aug 24, 2012


Plasma loops created in the lab were recorded using high-speed cameras. [Credit: Eve Stenson / Caltech]

In orbit around Earth is a wide range of satellites that we rely on for everything from television and radio feeds to GPS navigation. Although these spacecraft soar high above storms on Earth, they are still vulnerable to weather-only it's weather from the sun. Large solar flares-or plasma that erupts from the sun's surface-can cause widespread damage, both in space and on Earth, which is why researchers at the California Institute of Technology (Caltech) are working to learn more about the possible precursors to solar flares called plasma loops.

Now, they have recreated these loops in the lab.

"We're studying how these solar loops work, which contributes to the knowledge of space weather," says Paul Bellan, professor of applied physics at Caltech, who compares the research to studying hurricanes. For example, you can't predict a hurricane unless you know more about the events that precede it, like high-pressure and low-pressure fronts. The same is true for solar flares.

"It takes some time for the plasma to get to Earth from the sun, so it's possible that with more research, we could have up to a two-day warning period for massive solar flares."

The laboratory plasma loop studies were conducted by graduate student Eve Stenson together with Bellan and are reported in the August 13 issue of the journal Physical Review Letters.

They found that two magnetic forces control the behavior of arching loops of plasma, which is hot, ionized gas. "One force expands the arch radius and so lengthens the loop while the other continuously injects plasma from both ends into the loop," Bellan explains. "This latter force injects just the right amount of plasma to keep the density in the loop constant as it lengthens."

The duo says that in simpler terms, this process is like squeezing toothpaste into a tube from both ends, except that the toothpaste has little magnets in it, so there are magnetic forces acting internally. Stenson and Bellan studied plasma loops that they generated with a pulse-powered, magnetized plasma gun. Inside a vacuum chamber, electromagnets create an arched magnetic field.

Then, hydrogen and nitrogen gas is released at the two footpoints of the arch. Finally, a high-voltage electrical current is applied at the footpoints to ionize the gas and turn it into plasma, which travels at a minimum speed of about six miles per second.

"All three steps-the magnetic field, and the gas, and the high voltage-happen in just a flash of light inside the chamber," says Stenson. "We use high-speed cameras with optical filters to capture the behavior of the plasmas."

By color-coding the inflowing plasma, the optical filters vividly demonstrated the flow from the two ends of the loop. According to Bellan, no one has ever used this technique before. On camera, red plasma flows into the loop from one footpoint while blue plasma simultaneously flows into the loop from the other end.

"For each experiment, you'll only see the light from the hydrogen side or the nitrogen side in the images," explains Stenson. "But these experiments are very reproducible, so we can put separate images on top of each other to see both plasmas in one picture."

Next, Bellan's lab will test how two loops interact with each other. "We want to see if they can merge and form one big loop," says Bellan. "Some people believe that this is how larger plasma loops on the sun are formed."

Funding for the research outlined in the Physical Review Letters paper, "Magnetically Driven Flows in Arched Plasma Structures," came from the National Science Foundation, the U.S. Department of Energy, and the Air Force Office of Scientific Research.

.


Related Links
Caltech
Solar Science News at SpaceDaily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR SCIENCE
UI instruments aboard twin NASA spacecraft set for launch August 24
Iowa City IA (SPX) Aug 23, 2012
On Aug. 24, NASA will launch two identical satellites from Cape Canaveral, Fla., to begin its Radiation Belt Storm Probes (RBSP) mission to study the extremes of space weather and help scientists improve space weather forecasts. Why should you care? Because, says a University of Iowa space physics researcher, if you've ever used a cell phone, traveled by plane, or stayed up late to catch a ... read more


SOLAR SCIENCE
Soybeans Susceptible to Man-Made Materials in Soil

Chinese buyer of Burgundy wine chateau identified

Local irrigation systems provide better food security: study

Russia to 'considerably' cut grain exports amid drought

SOLAR SCIENCE
A new route to dissipationless electronics

Electronic Read-out of Quantum B

IBM buys flash memory firm

NIST's speedy ions could add zip to quantum computers

SOLAR SCIENCE
India's first Embarer AWAC headed home

ReAgent Supports Space Balloon Project

Enstrom completes Thai helicopter delivery

Peru on track to build new Cusco airport

SOLAR SCIENCE
China's Geely H1 profit rises 9% as exports surge

Germans prefer bigger engines: study

US launches test of Wi-Fi to prevent car accidents

American CEO of Czech truck-maker charged in graft case

SOLAR SCIENCE
China blamed for fake goods seized in Italy

Argentina under fire for protectionism

Asia eyes Brazil's growing consumer market

Record eurozone trade surplus, analysts divided on outlook

SOLAR SCIENCE
Natural Regeneration Building Urban Forests, Altering Species Composition

Myanmar in deforestation crisis

Widespread local extinctions in tropical forest 'remnants'

Marine research in the Brazilian rain forest

SOLAR SCIENCE
Landsat Data Continuity Mission Environmental Testing is Underway

Expert Analysis of Energy Infrastructure Using HiRes Satellite Imagery

Vecmap tracks the Asian bush mosquito

NASA Selects Combined Data Services Contract For Polar Satellites

SOLAR SCIENCE
Patterning defect-free nanocrystal films with nanometer resolution

New Phenomenon in Nanodisk Magnetic Vortices

Oh, my stars and hexagons! DNA code shapes gold nanoparticles

UCF nanoparticle discovery opens door for pharmaceuticals




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement