GPS News  
TECH SPACE
Ironing out the difficulties of moving fluids in space
by Melissa Gaskill for ISS Science News
Houston TX (SPX) Aug 30, 2018

Astronaut Ricky Arnold installing the module containing the PAPELL experiment inside the NanoRacks Platform aboard the space station.

Fluid flows downhill - at least it does on Earth. Fluid movement becomes much more complicated in space, and that creates challenges for systems that rely on pumping fluids around for thermal control, engine propellants and other functions.

An investigation aboard the International Space Station studies moving fluids with the power of magnets instead of using pumps with mechanical moving parts. Ferrofluids contain small iron-oxide particles that can be magnetized. For the PAPELL experiment, researchers use an electromagnetic field to manipulate and move these ferrofluids in a variety of different conditions. Cameras and sensors monitor the movement of the fluids across grids of electromagnets and through pipes.

"Mechanical components always pose a risk of failure, a problem that needs to be avoided on space missions, especially long ones," says Franziska Hild, one of the team of 30 students of the University of Stuttgart's Small Satellite Student Society (KSat e. V.) that developed and is conducting the investigation. "Use of a non-mechanical pump extends the lifetime of the system, allowing its use on long-term missions for thermal or propellant management."

Reliable, efficient pumping and other fluid transportation tasks are particularly important in the design of next-generation space vehicles. The ability to move fluids smoothly from one place to another in microgravity could eliminate many potential wrinkles in space exploration.

The exact behavior of a liquid under magnetic influence in microgravity is part of the investigation, adds Manfred Ehresmann, another of the investigators. "Currently, we are uncertain whether microgravity will increase or decrease the magnetic pump's performance. Easier movement in microgravity may aid movability of individual droplets, or hinder our manipulation capability by increasing the distances to the electromagnets."

In addition to advancing the technology for design of this new class of pumps in space, PAPELL may help solve other space-based fluid transport problems, says investigator Kira Grunwald. A low-wear, low-vibration, and low-maintenance pumping system could improve the performance and expected lifetime of space stations, satellites and space telescopes.

Pumps that require little maintenance and have extended operational lifetimes also have many potential applications on Earth, such as for pumping water in remote areas. The lower noise level of magnetic pumps also improves safety and comfort in the workplace, whether in space and on the ground.

This investigation was sponsored by the ISS National Lab, which is managed by the Center for the Advancement of Science in Space (CASIS). The experiment uses a NanoLab Platform inside a NanoRacks Module aboard the space station.


Related Links
Center for the Advancement of Science in Space
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
A materials scientist's dream come true
Nuremberg, Germany (SPX) Aug 27, 2018
In the 1940s, scientists first explained how materials can deform plastically by atomic-scale line defects called dislocations. These defects can be understood as tiny carpet folds that can move one part of a material relative to the other without spending a lot of energy. Many technical applications are based on this fundamental process, such as forging, but we also rely on the power of dislocations in our everyday life: in the crumple zone of cars dislocations protect lives by transforming energ ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
French tomato grower takes on Monsanto over weedkiller

Plant biodiversity essential to bee health

Bees get hooked on harmful pesticide: study

Environmentally friendly farming practices used by a third of global farms

TECH SPACE
Physicists show first proof of Dicke cooperativity in a matter-matter system

New material could improve efficiency of computer processing and memory

Helping the microchip industry go with the flow

Researchers achieve multifunctional solid-state quantum memory

TECH SPACE
Text Text, Bang Bang? Uber, NASA, US Army Working on Flying Taxis, AI Airspace

Largest US aircraft in history: civil usage or military purposes?

Pentagon announces flight tests of new decoy plane

Metal with memory: F-18 wing fold

TECH SPACE
Toyota pours $500 mn into driverless car tie-up with Uber

Tesla wins green rebate lawsuit against Canada's Ontario province

China's transport ministry censures Didi after murder

Startup delivers groceries in self-driving cars

TECH SPACE
Trump's trade pledges have backfired, energy trade group says

Rights groups urge Google not to bend to China censors

China-backed trade pact talks at 'critical stage': Singapore PM

Kazakh port in decline bids for slice of China trade

TECH SPACE
Tree species richness in Amazonian wetlands is three times greater than expected

Logging site slash removal may be boon for wild bees in managed forests

Frequent fires make droughts harder for young trees, even in wet eastern forests

Ancient Mayan deforestation hurt carbon reserves

TECH SPACE
NASA launching Advanced Laser to measure Earth's changing ice

A study by MSU scientists will help specify the models of the Earth atmosphere circulation

Teledyne e2v ultraviolet laser detector technology deployed on Aeolus

Wind mission ready for next phase

TECH SPACE
Big-picture thinking can advance nanoparticle manufacturing

Nanotubes change the shape of water

Fast visible-UV light nanobelt photodetector

Hybrid nanomaterials bristle with potential









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.