Subscribe free to our newsletters via your
. GPS News .




TECH SPACE
Invisibility cloaks move into the real-life classroom
by Staff Writers
Washington DC (SPX) May 05, 2015


In a diffusive light-scattering medium, light moves on random paths. A normal object casts a shadow, an object with an invisibility cloak does not. Image courtesy R. Schittny, KIT.

Who among us hasn't wanted to don a shimmering piece of fabric and instantly disappear from sight? Unfortunately, we non-magical folk are bound by the laws of physics, which have a way of preventing such fantastical escapes.

Real-life invisibility cloaks do exist, in a manner of speaking: researchers have engineered systems that bend light around an object, shielding it from detection. But most are very tiny and only work at very small wavelength ranges, rendering them less impressive to the average observer.

Now, a group of researchers from the Karlsruhe Institute of Technology (KIT), in Karlsruhe, Germany, has developed a portable invisibility cloak that can be taken into classrooms and used for demonstrations. It can't hide a human, but it can make small objects disappear from sight without specialized equipment.

Scientists hoping to divert light around an object to render it invisible must find a way to compensate for the increased distance the light must now travel. On a road trip, you might solve this problem by changing your speed.

If you had planned to take the rutted scenic road directly over the mountain pass, but it's closed for the season, you could instead take the six-lane superhighway that goes around the mountain. The greater distance is offset by the higher speed limit.

Unfortunately, light is a bit more challenging than a station wagon. Because relativity prevents mass from traveling faster than the vacuum speed of light, there's no way to further speed up the detoured light in a vacuum or in air.

To address this challenge, the KIT team constructed their cloak from a light-scattering material. By scattering light, the material slows down the effective propagation speed of the light waves through the medium. Then the light can be sped up again to make up for the longer path length around the hidden object.

In this cloak, the object to be concealed is placed inside a hollow metal cylinder coated with acrylic paint, which diffusely reflects light. The tube is embedded within a block of polydimethylsiloxane, a commonly used organic polymer, doped with titanium dioxide nanoparticles that make it scatter light.

"Our cloak takes advantage of the much lower effective propagation speed in light-scattering media," said Robert Schittny, who led the research project. "As we seemingly slow down the light everywhere, speeding it up again in the cloak to make up for the longer path around the core is not a problem."

If the average time it takes light to travel through the polydimethylsiloxane block is in just the right proportion to the average time it takes to travel through the cloak, the core will become invisible.

On the other hand, the completely solid-state cloak can be easily transported to classrooms. "It is a macroscopic cloak that you can look at with your bare eyes and hold in your hands," said Schittny. "With a reasonably strong flashlight in a not too bright room, it is very easy to demonstrate the cloaking. That means no fancy lab equipment, no microscopes, no post-processing of measurement data. The effect is just there for everyone to see."

Schittny and his colleagues hope their cloak will be used in classrooms and labs to excite and educate students about physics.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
The Optical Society
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
New model for the thermo-elasto-plasticity deformation of crystals
Beijing, China (SPX) May 01, 2015
Researchers have proposed a new thermo-elasto-plasticity constitutive model based on the interatomic potential and solid mechanics for metal crystals. Through this new model, the material behavior at different temperatures could be described accurately and conveniently. The work, led by Professor Wang TzuChiang, together with collaborators Chen cen and Tang Qiheng at the State Key Laborato ... read more


TECH SPACE
Fungi enhances crop roots and could be a future 'bio-fertilizer'

Startup turns old shipping containers into farms

Simulating seasons

Norway plans to slash subsidies to fur farms

TECH SPACE
Two-dimensional semiconductor comes clean

Defects in atomically thin semiconductor emit single photons

Researchers develop acoustically driven controls for smartphones

Printing silicon on paper, with lasers

TECH SPACE
Airbus DS, Cisco partner in key business areas

Singapore requests upgrade of its F-16s

Kuwait to order Boeing F/A-18 fighters worth $3 bn

Northrop announces new radar development for B-1 bombers

TECH SPACE
More than 200,000 road deaths a year in China: WHO

Tesla ramps up output in first quarter but losses rise

China auto giant FAW gets new chief amid graft scandal

Japan's Toyota, Mazda eye green alliance: report

TECH SPACE
Chinese turn Paris suburb into Europe's biggest fashion market

Trade with Cuba on Russian radar

China April exports down 6.4% in new sign of weakness

Germany's Siemens acknowledges China examination

TECH SPACE
Citizen science helps predict spread of sudden oak death

Forests could be the trump card in efforts to end global hunger

Forest canopies buffer against climate change

Partially logged rainforests emitting more carbon than previously thought

TECH SPACE
Volcano Loki observed from Earth

Pollution Monitoring Instrument Passes Critical NASA Review

Latin America EO Data Market To Exceed $350 Million By 2024

NASA Aids Response to Nepal Quake

TECH SPACE
Chemists strike nano-gold with 4 new atomic structures

New technique for exploring structural dynamics of nanoworld

Nanotubes with 2 walls have singular qualities

Happily ever after: Scientists arrange protein-nanoparticle marriage




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.