. GPS News .




.
TECH SPACE
Infrared technology for measuring the effect of fire on materials
by Staff Writers
Madrid, Spain (SPX) Dec 21, 2011

Researchers at Universidad Carlos III de Madrid are developing an infrared measuring method to analyze the thermal properties and resistance to fire of composite materials. This advance would have applications in aerospace engineering and other areas where fire safety requires that the "composite" materials withstand high temperatures. Credit: UC3M.

The main problem associated with measuring the effects of fire on materials lies in the temperature of the flames, which reaches over 1000 C and can obscure the actual temperature of the material.

In addition, there is the problem of the high concentration of gasses (CO2, H2O and others), which makes it difficult to obtain clear images of the sample being subjected to fire. In order to solve this problem, the UC3M scientists who developed this method used a measurement that utilizes the infrared spectrum.

"To do this, we had to use an infrared camera, properly set, spectrally, for measuring the temperature, as well as image processing that allowed us to determine the measurement, discounting the flame's fanning effects", explains one of the authors, Fernando Lopez, a tenured professor in the Physics Department at UC3M.

This research, which was carried out in collaboration with the Airbus Systems Laboratory, and which has been published in the journal Measurement Science and Technology, has applications in the aeronautical industry, where it is essential to know what effects fire will have on the composite materials (fiberglass, carbon fiber, etc.) that are used in airplanes.

Moreover, this method could be applied in other sectors where a material's resistance to fire is crucial, such as in rail and land transport or fire protection in housing.

The advantage of using this method of measurement is that it can be done without any direct contact with the material, almost instantly (in milliseconds) and under severe conditions (when flames are present), where other systems of measurement cannot be used, the researchers explain.

The professor states that, "The main objective is to quickly and precisely measure the real temperature of the sample over the entire surface, including the part that is hidden by the flames, and to do this from a distance." And he adds, "All of this, as a function of time, and taking into consideration the rise and fall of the temperature over time."

Another line of investigation currently being developed by these scientists from the Laboratorio del Infrarrojo (LIR - Infrared Laboratory) at the UC3M is one that allows them to measure, from a distance, the thermodynamic parameters of materials (emissivity and diffusivity, coefficients of conductivity and specific heat), by means of an infrared analysis of the image.

In addition, they are studying ways in which to use their ability to detect hidden subsurface defects that can be generated by fire or other causes.

Measuring temperatures in the presence of flames that are "dirty" based on their subproducts, includes a strong infrared component of absorption and emission that must be discounted in a very precise manner, according to the researchers.

This technology falls within the spectral methods, which the LIR-UC3M specializes in, that is, those that are based on properties that depend on the wavelength.

Infrared thermography of solid surfaces in a fire; Melendez, J.; Foronda, A.; Aranda, J. M.; Lopez, F.; Lopez del Cerro, F. J. - Measurement Science and Technology 21 (10): Art. No. 105504 OCT 2010 ISSN: 0957-0233

Related Links
Carlos III University of Madrid
Space Technology News - Applications and Research




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TECH SPACE
German company finds rare earths resources in Magadascar
Frankfurt (AFP) Dec 20, 2011
Tantalus Rare Earths, a German company specialising in the exploration of rare earths, said Tuesday it has come across what it believes to be important deposits in a region of Magadascar. Tantalus Rare Earths said it believes it has found 130 million tonnes of lateritic clay that contains rare earths - which are used in the production of high-tech products such as electric cars, wind turb ... read more


TECH SPACE
Sugar pump in plants identified

Artichokes grow big in Texas

Growstones ideal alternative to perlite, parboiled rice hulls

How exposure to irregular light affects plant circadian rhythms

TECH SPACE
Quantum Computing Has Applications in Magnetic Imaging

Sharpening the lines could lead to even smaller features and faster microchips

Optical Fiber Innovation Could Make Future Optical Computers a 'SNAP'

New method for enhancing thermal conductivity could cool computer chips, lasers and other devices

TECH SPACE
EU, US lock horns on Europe airline emissions charges

EU court rejects US airline challenge to emissions charges

EU unyielding on airline carbon rules despite US pressure

Removing sulfur from jet fuel cools climate

TECH SPACE
Car makers risk 10-bln-euro fine for EU carbon breach

Japan's Toyota plans record 2012 output: reports

End of the road as carmaker Saab files for bankruptcy

GM says no to new Saab deal

TECH SPACE
S. America cool toward U.S. trade pitch?

Chinese hacked into US Chamber: report

Internet lets US export consumer lifestyle

Taiwan lets Chinese lenders buy bank shares

TECH SPACE
The case of the dying aspens

Little headway in Durban on deforestation: experts

Climate change blamed for dead trees in Africa

Ecologists fume as Brazil Senate OKs forestry reform

TECH SPACE
SMOS detects freezing soil as winter takes grip

NASA Gears Up for Airborne Study of Earth's Radiation Balance

Study Shows More Shrubbery in a Warming World

Astrium awarded Sentinel 5 Precursor contract

TECH SPACE
Graphene grows better on certain copper crystals

New method of growing high-quality graphene promising for next-gen technology

Giant flakes make graphene oxide gel

Amorphous diamond, a new super-hard form of carbon created under ultrahigh pressure


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement