Subscribe free to our newsletters via your
. GPS News .




WATER WORLD
Improving water quality can help save coral reefs
by Staff Writers
Southampton UK (SPX) Aug 22, 2012


Light and temperature trigger the loss of symbiotic algae (bleaching) in a nutrient-stressed staghorn coral. Credit: University of Southampton.

Research from the University of Southampton and the National Oceanography Centre, Southampton has found that an imbalance of nutrients in reef waters can increase the bleaching susceptibility of reef corals.

Corals are made up of many polyps that jointly form a layer of living tissue covering the calcareous skeletons. They depend on single-celled algae called zooxanthellae, which live within the coral polyps.

The coral animal and the associated zooxanthellae depend on each other for survival in a symbiotic relationship, where the coral supplies the algae with nutrients and a place to live. In turn, the algae offer the coral some products of their photosynthesis, providing them with an important energy source.

High water temperatures can block photosynthetic reactions in the algal cells causing a build-up of toxic oxygen compounds, which threaten the coral and can result in a loss of the zooxanthellae.

Without the algae, corals appear white, a state which is often referred to as 'bleached'. Bleaching often leads to coral death and mass coral bleaching has had already devastating effects on coral reef ecosystems.

The study of University of Southampton, published in the latest issue of the journal Nature Climate Change, has found that nutrient enrichment of the water can increase the probability of corals to suffer from heat-induced bleaching.

Within the coral, the growth of zooxanthellae is restricted by the limited supply of nutrients. This allows the algae to transfer a substantial amount of their photosynthetically fixed carbon to the coral, which is crucial for the symbiotic relationship.

Algal growth becomes unbalanced when the availability of a specific nutrient decreases compared to the cellular demand, a condition called nutrient starvation.

Researchers from the University of Southampton based at the Coral Reef Laboratory in the National Oceanography Centre, Southampton, found that an increased supply of dissolved nitrogen compounds in combination with a restricted availability of phosphate results in phosphate starvation of the algae. This condition is associated with a reduction in photosynthetic efficiency and increases the susceptibility of corals to temperature and light-induced bleaching.

Dr Jorg Wiedenmann, Senior Lecturer of Biological Oceanography at the University of Southampton and Head of the Coral Reef Laboratory, who led the study, says: "Our findings suggest that the most severe impact on coral health might actually not arise from the over-enrichment with one group of nutrients, for example, nitrogen, but from the resulting relative depletion of other types such as phosphate that is caused by the increased demand of the growing zooxanthellae populations."

Dr Wiedenmann adds: "Our results have strong implications for coastal management. The findings suggest that a balanced reduction of the nutrient input in coastal waters could help to mitigate the effects of increasing seawater temperatures on coral reefs. However, such measures will be effective only for a short period of time, so it is important to stop the warming of the oceans, which will otherwise destroy most of the reefs in their present form in the near future.

"Finally, our results should help the design of functioning marine reserves."

.


Related Links
University of Southampton
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Dinosaur bends caused by prolonged diving
Melbourne, Australia (SPX) Aug 22, 2012
Dinosaurs-like creatures may have injured themselves during leisurely deep-sea diving trips and not from resurfacing too quickly, as previously thought. A recent study identified bone deformities on the fossilized remains of Ichthyosarians, which were giant dolphin-like reptiles that first appeared about 245 million years ago. The lesions were similar to those human divers develop as ... read more


WATER WORLD
$15 million 'gutter oil' court case begins in China

US, Mexico, France to discuss soaring grain prices

EU group slams protectionism in China wine row

Electrifying success in raising antioxidant levels in sweet potatoes

WATER WORLD
A new route to dissipationless electronics

Electronic Read-out of Quantum B

IBM buys flash memory firm

NIST's speedy ions could add zip to quantum computers

WATER WORLD
Swiss fighter jet purchase to go ahead despite criticism

Taiwan's China Airlines boosts Auckland flights

Xiamen Airlines in talks to buy 30 Boeing 737 MAXs

Taiwan denies it still seeks F-16C-D jets

WATER WORLD
China's Geely H1 profit rises 9% as exports surge

Germans prefer bigger engines: study

US launches test of Wi-Fi to prevent car accidents

American CEO of Czech truck-maker charged in graft case

WATER WORLD
Asia eyes Brazil's growing consumer market

Record eurozone trade surplus, analysts divided on outlook

Foreign investment in China declines in July

Oracle fined $2 mn for off-books payments in India

WATER WORLD
Myanmar in deforestation crisis

Widespread local extinctions in tropical forest 'remnants'

Marine research in the Brazilian rain forest

Thai forces 'kill 38 Cambodian loggers in six months'

WATER WORLD
Vecmap tracks the Asian bush mosquito

NASA Selects Combined Data Services Contract For Polar Satellites

Proba-1 microsat snaps Olympic neighbourhood

Sparse microwave imaging: A new concept in microwave imaging technology

WATER WORLD
Patterning defect-free nanocrystal films with nanometer resolution

New Phenomenon in Nanodisk Magnetic Vortices

Oh, my stars and hexagons! DNA code shapes gold nanoparticles

UCF nanoparticle discovery opens door for pharmaceuticals




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement