GPS News  
Imperial Scientists Explain Tectonic Plate Motions

When two tectonic plates collide, with one sliding below the other and sinking into mantle, it can lead to the formation of mountain belts, like the Andes, and island arcs, like Japan and, in some places, cause explosive volcanism and earthquakes. Dr Goes say more research is needed, but believes this study could potentially help scientists determine earthquake risks in parts of these zones where none have ever been recorded before.
by Staff Writers
London, UK (SPX) Feb 22, 2008
The first direct evidence of how and when tectonic plates move into the deepest reaches of the Earth is published in Nature today. Scientists hope their description of how plates collide with one sliding below the other into the rocky mantle could potentially improve their ability to assess earthquake risks.

The UK and Swiss team found that, contrary to common scientific predictions, dense plates tend to be held in the upper mantle, while younger and lighter plates sink more readily into the lower mantle.

The mantle is a zone underneath the Earth's crust encompassing its super hot molten core. It is divided into an upper and lower area, and is made up of a 2,900 km circumference of churning, viscous rock. It is constantly fed with new material from parts of tectonic plates which slide down from the surface into it.

The researchers' numerical models show how old, dense and relatively stiff plates tend to flatten upon reaching the upper-lower mantle boundary, 'draping' on top of it. Their models are helping to explain plate movements and earthquakes in the Western Pacific, where old plates currently sink below Tonga, the Mariana Islands and Japan.

By contrast, younger more malleable plates tend to bend and fold above the boundary of the lower mantle for tens of millions of years until they form a critical mass that can sink rapidly into the lower mantle.

When this mass moves into the lower mantle, the part of the plate still at the surface is pulled along at high speed. This explains why plate movements below Central and northern South America are much higher than expected for such young plates.

The scientists came to these conclusions by using a numerical model, originally used to show how buildings buckle and fold, which calculates the brittleness, stiffness and elasticity of tectonic plates alongside how the pressures and stresses inside the mantle would affect the plate on its downward descent.

They then compared the modelling with plate movement data. By comparing the two models, the team was able to build up a clear picture of how plates should move when stalled in the upper mantle and also show, for the first time, how tectonic plate rock is mixing within the mantle.

Commenting about the study, lead researcher Dr Saskia Goes, from Imperial College London's Department of Earth Science and Engineering, said:

"It is exciting to see direct evidence of plates transiting from the upper and lower mantle. This process has been predicted by models before, but no one has been able to link these predictions with observations, as we now do for plate motions."

When two tectonic plates collide, with one sliding below the other and sinking into mantle, it can lead to the formation of mountain belts, like the Andes, and island arcs, like Japan and, in some places, cause explosive volcanism and earthquakes. Dr Goes say more research is needed, but believes this study could potentially help scientists determine earthquake risks in parts of these zones where none have ever been recorded before.

"The speed with which the two plates converge, and the force with which they are pushed together, determine the size of the largest earthquakes and time between large tremors. Understanding what forces control the plate motions will ultimately help us determine the chances for large earthquakes in areas where plates converge, in places like the northern U.S., Java and northern Peru, but where no large earthquakes have been recorded in historic times," she adds.

Related Links
Imperial College London
Tectonic Science and News



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Core Samples Obtained From Subsea Fault System Off Japan
Washington DC (SPX) Feb 06, 2008
The third expedition of the Integrated Ocean Drilling Program's Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) completed its mission off the Kii Peninsula. The expedition science party, 26 scientists representing 10 countries, set forth on Dec. 19, 2007, aboard the drilling vessel Chikyu, to evaluate the deformation, structural partitioning, and physical characteristics of the Nankai Trough fault zone.







  • NASA opens a rotary wing research project
  • All-star line-up at first Singapore Airshow
  • Military Aircraft To Perform Aviation Safety Research
  • Birds Bats And Insects Hold Secrets For Aerospace Engineers

  • Hydrogen-fueled cars stuck at the gate
  • A Greener Way To Power Cars
  • Porsche takes on London mayor over road pricing scheme
  • Toyota unveils hybrid version of flagship Crown

  • Northrop Grumman And Harris Demonstrate Airborne Networking
  • EADS DS Delivers Army Command And Control Information System To Franco-German Brigade
  • Thompson Files: Electronic war blindness
  • Harris Provides American Forces Network With Broadcast System To Reach One Million Troops

  • BMD Focus: Killing NROL-21 -- Part 1
  • Satellite strike shows US missile defense works: Gates
  • Missile Defense Globally Protects Against Toxic Satellite
  • Raytheon Finishes 2007 With Two Patriot Awards Totaling 377 Million USD

  • Major Scientific Push To Tackle Agricultural Productivity And Food Security In Developing World
  • UN warns of locust swarm menacing Horn of Africa
  • LSU Researchers Challenge Analyses On Sustainability Of Gulf Fisheries
  • Winemakers mull climate change at Barcelona conference

  • Tens of thousands camp out after Indonesian quake: official
  • Thousands of Hong Kong factories in China may close: report
  • Trailers given to US disaster victims unsafe: CDC
  • 911 Calls Offer Potential Early Warning System

  • Darkest material developed in lab
  • NASA And Northrop Grumman Partner To Measure The Immeasurable
  • US DoD Succeeds In Intercepting Non-Functioning Satellite
  • Amazing Miniaturized SIDECAR Drives Webb Telescope's Signal

  • Robot Plumbs Wisconsin Lake On Way To Antarctica, Jovian Moon
  • Can A Robot Draw A Map
  • Meet Blob The Robot
  • Russian Fuel Flows Into Jules Verne Automated Transfer Vehicle

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement