GPS News  
CLIMATE SCIENCE
Impact of sea smell overestimated by present climate models
by Staff Writers
Leipzig, Germany (SPX) Nov 08, 2016


The most comprehensive study on the atmospheric oxidation of the natural climatic gas dimethyl sulfide (DMS) has been published. Image courtesy Erik Hans Hoffmann, TROPOS. For a larger version of this image please go here.

The formation of sulfur dioxide from the oxidation of dimethyl sulfide (DMS) and, thus, of cooling clouds over the oceans seems to be overvalued in current climate models. This concludes scientists from the Leibniz Institute for Tropospheric Research (TROPOS) from a model study on the effects of DMS on atmospheric chemistry.

Until now, models considering only the oxidation in the gas phase describe merely the oxidation pathway and neglect important pathways in the aqueous phase of the atmosphere, writes the team in the journal PNAS. This publication contains until now the most comprehensive mechanistic study on the multiphase oxidation of this compound.

The results have shown that in order to improve the understanding of the atmospheric chemistry and its climate effects over the oceans, a more detailed knowledge about the multiphase oxidation of DMS and its oxidation products is necessary. Furthermore, it is also needed to increase the accuracy of climate prediction.

Dimethyl sulfide (DMS) is formed by microorganisms and is, for example, also part of human breath odor. However, it is more pleasant to remember as the typical smell of the sea. DMS represents the most common natural sulfur compound emitted to the atmosphere. Major contributors are oceans, which make up around 70 % of Earth's surface. DMS is formed by phytoplankton and then released from the seawater.

In the atmosphere, DMS oxidizes to sulfuric acid (H2SO4) via dimethyl sulfoxide (DMSO) and sulfur dioxide (SO2). Sulfuric acid can form new cloud nuclei, from which new cloud droplets can emerge. Hence, marine clouds will be visually brightened, which influences the radiative effect of clouds and thus Earth's climate. Therefore, the understanding and quantification of these chemical processes in the atmosphere is of high importance for the knowledge of the natural climate effect.

The oxidation process of DMS has already been investigated in various model studies - albeit without accurate considered aqueous-phase chemistry. In order to close these mechanistic gaps, scientists of TROPOS have developed a comprehensive multiphase chemical mechanism ("Chemical Aqueous Phase Radical Mechanism DMS Module 1.0").

This mechanism was coupled to a comprehensive gas-phase (MCMv3.2) and aqueous-phase mechanism (CAPRAM) and applied with the SPACCIM model. The SPACCIM model was developed at TROPOS and is, due to the detailed and combined description of microphysical and chemical processes in aerosols and clouds, particularly suitable for complex studies on atmospheric multiphase processes.

As most important outcome, the new model results showed that: "The processes in the aqueous phase significantly reduce the amount of sulfur dioxide and increase the amount of methanesulfonic acid (MSA).

In earlier models, there was a gap between the projected values in the model and measurements. Now, the scientists have been able to clarify this contradiction and thus confirm the importance of the aqueous phase for the atmospheric oxidation of dimethyl sulfide and its products such as MSA", reports Dr. Andreas Tilgner of TROPOS.

The results show that the role of DMS in Earth's climate is still not sufficiently understood - despite many global model studies.

"Our simulations indicate that the increased DMS emissions lead to higher aerosol particle mass loads but not necessarily to a higher number of particles or cloud droplets. The modeling results are important to understand the climate processes between ocean and atmosphere. In addition, geoengineering ideas are constantly being discussed, which are hoping for more cooling clouds by fertilizing the ocean", explains Prof.

Hartmut Herrmann from TROPOS. However, this study suggests that the production of sulfur dioxide is less pronounced and the effects on the back-reflection effect of the clouds are lower than expected. Therefore, the corresponding geoengineering approaches could be less effective than assumed. Tilo Arnhold

Erik Hans Hoffmann, Andreas Tilgner, Roland Schrodner, Peter Brauer, Ralf Wolke, and Hartmut Herrmann (2016): An advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl sulfide chemistry. PNAS; 113 (42) 11776-11781, doi: 10.1073/pnas.1606320113


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Leibniz Institute for Tropospheric Research
Climate Science News - Modeling, Mitigation Adaptation






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CLIMATE SCIENCE
Will temperature extremes increase in Northeast Asia?
Beijing, China (SPX) Nov 08, 2016
Northeast Asia includes the areas of Northeast China, the Russian Far East, Japan and the Korean Peninsula. Climate variability and change impose enormous challenges for this region, with its rapidly developing economy and large population. Natural climate variability and anthropogenic forcings both modulate regional climate, particularly in regions sensitive to global climate change, such ... read more


CLIMATE SCIENCE
How the chicken crossed the Red Sea

Rain, hail and drought: organic French winemakers feel the pinch

Forests, locals harmed in Mexico's avocado boom

Controlling plant regeneration systems may drive the future of agriculture

CLIMATE SCIENCE
New technique for creating NV-doped nanodiamonds may be boost for quantum computing

Chip maker Broadcom in $5.9 bn deal to buy Brocade

Exploring defects in nanoscale devices for possible quantum computing applications

Making silicon-germanium core fibers a reality

CLIMATE SCIENCE
'Morphing' wing offers new twist on plane flight and manufacturing

Lockheed delivers Super Galaxy to U.S. Air Force Reserve Command

Boeing, Airbus trade barbs as China competition heats up

China, Russia to invest 'up to $20 bn' in long-haul jet: report

CLIMATE SCIENCE
VW makes progress towards 3.0 l diesel settlement: judge

Pedestrians walk freely in a world of self-driving cars

Chinese ride-share king Didi Chuxing could go global

Long-vanished German car brand joins electric race

CLIMATE SCIENCE
Vatican rejects Chinese priest's self-ordination as bishop

China replaces finance minister Lou Jiwei: Xinhua

Eastern Europe gets 10 bln euro Chinese investment fund

New York fines Chinese bank $215 mn for money laundering violations

CLIMATE SCIENCE
Mangrove protection key to survival for Senegalese community

Morocco's oases fight back creeping desert sands

Database captures most extensive urban tree sizes, growth rates across United States

New warning over spread of ash dieback

CLIMATE SCIENCE
Study reveals how particles that seed clouds in the Amazon are produced

Satellites help scientists see forests for the trees amid climate change

NASA and NOAA Celebrate Five-Year Anniversary of Suomi NPP Launch

Hosted Payloads Offers Remedy for Looming Air Force Weather Forecasting Gap

CLIMATE SCIENCE
Light drives single-molecule nanoroadsters

Nanostructures made of pure gold

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane

Nanoparticle taxicab materials can identify, collect and transport debris on surfaces









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.