GPS News  
CHIP TECH
Immunizing quantum bits so that they can grow up
by Staff Writers
West Lafayette IN (SPX) Mar 01, 2019

A new material could 'immunize' topological quantum bits so that they are resilient enough for building a quantum computer.

Quantum computers will process significantly more information at once compared to today's computers. But the building blocks that contain this information - quantum bits, or "qubits" - are way too sensitive to their surroundings to work well enough right now to build a practical quantum computer.

Long story short, qubits need a better immune system before they can grow up.

A new material, engineered by Purdue University researchers into a thin strip, is one step closer to "immunizing" qubits against noise, such as heat and other parts of a computer, that interferes with how well they hold information. The work appears in Physical Review Letters.

The thin strip, called a "nanoribbon," is a version of a material that conducts electrical current on its surface but not on the inside - called a "topological insulator" - with two superconductor electrical leads to form a device called a "Josephson junction."

In a quantum computer, a qubit "entangles" with other qubits. This means that reading the quantum information from one qubit automatically affects the result from another, no matter how far apart they are.

Without entanglement, the speedy calculations that set apart quantum computing can't happen. But entanglement and the quantum nature of the qubits are also sensitive to noise, so they need extra protection.

A topological-insulator nanoribbon Josephson junction device is one of many options researchers have been investigating for building more resilient qubits. This resilience could come from special properties created by conducting a supercurrent on the surface of a topological insulator, where an electron's spin is locked to momentum.

The problem so far is that a supercurrent tends to leak into the inside of topological insulators, preventing it from flowing completely on the surface.

To get more resilient, topological qubits need supercurrents to flow through the surface channels of topological insulators.

"We have developed a material that is really clean, in the sense that there are no conducting states in the bulk of the topological insulator," said Yong Chen, a Purdue professor of physics and astronomy and of electrical and computer engineering, and the director of the Purdue Quantum Science and Engineering Institute. "Superconductivity on the surface is the first step for building these topological quantum computing devices based on topological insulators."

Morteza Kayyalha, a former Ph.D. student in Chen's lab, could show that the supercurrent wraps all the way around the new topological insulator nanoribbon at temperatures 20 percent lower than the "critical temperature," when the junction becomes superconducting. The experiment was conducted in collaboration with the lab of Leonid Rokhinson, a Purdue professor of physics and astronomy.

"It's known that as the temperature lowers, the superconductivity is enhanced," Chen said. "The fact that much more supercurrent flowed at even lower temperatures for our device was evidence that it is flowing around these protective surfaces."

Research Report: Anomalous Low-Temperature Enhancement of Supercurrent in Topological-Insulator Nanoribbon Josephson Junctions: Evidence for Low-Energy Andreev Bound States


Related Links
Purdue University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Immunizing quantum computers against errors
Zurich, Switzerland (SPX) Feb 28, 2019
When building a quantum computer, one needs to reckon with errors - in both senses of the word. Quantum bits or "qubits", which can take on the logical values 0 and 1 at the same time and thus carry out calculations faster, are extremely susceptible to perturbations. A possible remedy for this is quantum error correction, which means that each qubit is represented "redundantly" in several copies, such that errors can be detected and eventually corrected without disturbing the fragile quantum state ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Trump urges China to remove tariffs on US agricultural products

'Equine strep throat' kills 4,000 donkeys in Niger

Getting to the core of underwater soil

Discovery of sour genes in citrus may pave way for sweeter lemons, limes

CHIP TECH
Immunizing quantum computers against errors

Understanding high efficiency of deep ultraviolet LEDs

Terahertz wireless makes big strides in paving the way to technological singularity

Spintronics by 'straintronics'

CHIP TECH
US Navy's version of F-35 jet 'ready for combat'

Boeing awarded $428M for modifications to P-8A Poseidon

Air Force conducts first F-35A forward refueling operation in exercise

U.S. Navy declares F-35C ready for combat

CHIP TECH
Tesla says its $35k electric car ready to roll

German carmakers team up to tackle 21st Century challenges

Tesla's 'mass market' $35k electric car ready to order, online

UK car output slumps on China slowdown, Brexit: data

CHIP TECH
Much to be done on China trade: US Trade Rep Lighthizer

China says it 'regrets' WTO ruling in favour of US on subsidies

A 'catastrophe' if US Congress fails to ratify USMCA: trade rep

US and China close to reaching major trade deal: report

CHIP TECH
Complete world map of tree diversity

World's biggest terrestrial carbon sinks are found in young forests

Indonesian firms owe $1.3 bn in forest damage fines: Greenpeace

US Senate votes to expand nationals parks, protected lands

CHIP TECH
D-Orbit Signs Contract for launch and deployment services with Planet Labs

On its 5th Anniversary, GPM Still Right as Rain

KBRwyle Awarded $19M to Perform Flight Ops for USGS Satellite

SNoOPI: A flying ace for soil moisture and snow measurements

CHIP TECH
The holy grail of nanowire production

A new spin in nano-electronics

Nanoparticle computing takes a giant step forward

Breakthrough nanoscience discovery made on flight from New York to Jerusalem









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.