Subscribe free to our newsletters via your
. GPS News .




BLUE SKY
Igniting the air for atmospheric research
by Staff Writers
Vienna, Austria (SPX) Feb 20, 2015


These are laser filaments in the air. Image courtesy TU Wien.

It looks a bit like a lightsaber from Star Wars: when an extremely intense laser pulse is sent through the air, it can focus itself, creating a narrow filament of light. By shooting such filaments into the sky and analysing back-scattered light, it would be possible to trace pollutants in the atmosphere.

To achieve this, lasers with mid-infrared wavelengths are required. However, reaching the critical power to produce such a filament with mid-infrared laser beams is very difficult. At these wavelengths, laser filaments have only been produced in high pressure gas tubes. Now, an Austro-Russian research team has succeeded in building a new kind of mid-infrared laser which is so intense that it ignites laser filaments in the air at normal atmospheric pressure.

Air that Acts Like a Lens
Normally, a beam of light is diffracted and diverges as it propagates. In order to focus the beam, some sort of lens is needed. "An intense laser pulse can create such a lens in the air by itself", says Audrius Pugzlys (Photonics Institute, Vienna University of Technology). The refractive index of air depends on the intensity of the beam. This intensity is not uniform, it is highest in the centre of the beam. This creates a focusing lens in the air.

"This laser-pulse-initiated lens acts back on the parent laser beam by focusing it and creating plasma, which then in turn tends to defocus the beam", says Skirmantas Alisauskas (Vienna University of Technology). The interplay between focusing and defocusing effects creates a narrow filament that can be dozens of centimeters or even a few meters long. By spatial and temporal shaping of the pulses, it is possible to control the position in the sky where the filament is created.

The Most Interesting Wavelengths are Infrared
"Once a shining laser filament is created, it generates broadband mid-infrared light, which can tell us about the chemical composition of the air", says Audrius Pugzlys. Many molecules absorb light in the mid-infrared spectral range in a very characteristic way, so that they can be identified.

Therefore, powerful laser beams in the mid-infrared range are needed to ignite the filaments and to make remote atmospheric sensing possible. But for a long time, such mid-infrared lasers generating very short and high-energy pulses have not been available.

A team of scientists at the Photonics Institute of Vienna University of Technology has been working for years on designing a high-energy ultrashort pulse source. "For some time, we have already been able to ignite filaments in high pressure gas tubes filled with nitrogen or oxygen. But now, we have finally succeeded in boosting the pulse energy to such a level that filaments are produced in air at normal pressure", says Skirmantas Alisauskas.

The experiment was conducted together with a research team from Russia, using a laser system which was installed in the Russian Quantum Centre in Moscow using the amplification technology developed in Vienna.

Next Step: A Laser in Mid-Air
The next steps are already being planned: In the lab, the team has demonstrated that it is possible to make the mid-infrared laser interact with nitrogen in such a way that it does not only create a shining plasma filament but that it turns the filament into a laser, shining a beam right back towards the infrared laser source.

"If we could obtain this effect in the filament in the atmosphere, we could create a laser in the sky. We would have two laser beams propagating along the same axis in opposite directions - one fired up by our laser source, the other fired back by the air itself", says Audrius Pugzlys.

"If the molecules in between are hit by two different lasers at the same time, it is possible to analyse them very accurately via nonlinear scattering processes." The mid-infrared laser filament device could one day be used to measure the concentration of pollutants above a city or to remotely detect harmful substances after a chemical accident.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Vienna University of Technology
The Air We Breathe at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BLUE SKY
Scientists try to unravel warming's impact on jet stream
Montreal (AFP) Feb 12, 2015
A winter of strange weather and turbulent transatlantic flights has scientists asking: Has a predicted climate imbalance of the jet stream begun? The Arctic is warming faster than other parts of the world, and scientists believe that is having a dramatic impact on the jet stream, which may be responsible for the unusual weather and stronger upper atmospheric winds of late. On January 8, ... read more


BLUE SKY
Toxic 'Tet' kumquats highlight Vietnam's pesticide problem

Scientists sound storm warning on African climate change

World crop diversity survives in small urban and rural farms

Large scale study warns of unsustainable ecological decline in rural China

BLUE SKY
Smarter multicore chips

Penn researchers develop new technique for making molybdenum disulfide

The future of electronics -- now in 2-D

One-atom-thin silicon transistors hold promise for super-fast computing

BLUE SKY
Air Force issues RFI for electronic warfare technology

U.S. Air Force pushes for more spending on big-ticket items

France to ink jet sale to Egypt as Cairo bombs IS

Egypt ends US arms 'monopoly' with French jet fighter deal

BLUE SKY
Study recommends EPA labels on cost of traditional vs. hybrids, EVs

More electric car charging points in Japan than gas stations

Mercedes to recall over 127,000 vehicles in China: govt

French automaker PSA cuts losses after ownership change

BLUE SKY
WTO rules against China in row with EU, Japan over steel pipes

China Internet censorship hurts European businesses: survey

China premier asks Greece PM to deepen cooperation on port

Most US firms feel 'targeted' by China: survey

BLUE SKY
Finding winners and losers in global land use

Colombia seeks 'environmental corridor' across Andes, Amazon

Canada goes to WTO in China wood pulp row

Long-term changes in dead wood reveal new forest dynamics

BLUE SKY
Global rainfall satellites require massive overhaul

NASA Aircraft, Spacecraft Aid Atmospheric River Study

Mud Matters

NASA Study Shows Global Sea Ice Diminishing, Despite Antarctic Gains

BLUE SKY
Nanotechnology: Better measurements of single molecule circuits

New understanding of electron behavior at tips of carbon nanocones could help provide candidates

X-ray pulses uncover free nanoparticles for the first time in 3-D

A nanoscale solution to the big problem of overheating in microelectronic devices




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.