GPS News  
ENERGY TECH
Identifying new sources of turbulence in spherical tokamaks
by Staff Writers
Plainsboro NJ (SPX) Nov 30, 2015


This is a computer simulation of turbulence in a model of the NSTX-U. Image courtesy Eliot Feibush. For a larger version of this image please go here.

For fusion reactions to take place efficiently, the atomic nuclei that fuse together in plasma must be kept sufficiently hot. But turbulence in the plasma that flows in facilities called tokamaks can cause heat to leak from the core of the plasma to its outer edge, causing reactions to fizzle out.

Researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have for the first time modeled previously unsuspected sources of turbulence in spherical tokamaks, an alternative design for producing fusion energy. The findings, published online in October in Physics of Plasmas, could influence the development of future fusion facilities. This work was supported by the DOE Office of Science.

Spherical tokamaks, like the recently completed National Spherical Torus Experiment-Upgrade (NSTX-U) at PPPL, are shaped like cored apples compared with the mushroom-like design of conventional tokamaks that are more widely used. The cored-apple shape provides some distinct characteristics for the behavior of the plasma inside.

The paper, with principal research physicist Weixing Wang as lead author, identifies two important new sources of turbulence based on data from experiments on the National Spherical Torus Experiment prior to its upgrade. The discoveries were made by using state-of-the-art large-scale computer simulations. These sources are:

* Instabilities caused by plasma that flows faster in the center of the fusion facility than toward the edge when rotating strongly in L-mode - or low confinement - regimes. These instabilities, called "Kelvin-Helmholtz modes" after physicists Baron Kelvin and Hermann von Helmholtz, act like wind that stirs up waves as it blows over water and are for the first time found to be relevant for realistic fusion experiments.

Such non-uniform plasma flows have been known to play favorable roles in fusion plasmas in conventional and spherical tokamaks. The new results from this study suggest that we may also need to keep these flows within an optimized level in spherical tokamaks.

* Trapped electrons that bounce between two points in a section of the tokamak instead of swirling all the way around the facility. These electrons were shown to cause significant leakage of heat in H-mode - or high-confinement - regimes by driving a specific instability when they collide frequently. This type of instability is believed to play little role in conventional tokamaks but can provide a robust source of plasma turbulence in spherical tokamaks.

Most interestingly, the model predicts a range of trapped electron collisions in spherical tokamaks that can be turbulence-free, thus improving the plasma confinement. Such favorable plasmas could possibly be achieved by future advanced spherical tokamaks operating at high temperature.

Findings of the new model can be tested on the NSTX-U and will help guide experiments to identify non-traditional sources of turbulence in the spherical facility. Results of this research can shed light on the physics behind key obstacles to plasma confinement in spherical facilities and on ways to overcome them in future machines.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Accelerating fusion research through the cutting edge supercomputer
Tokyo, Japan (SPX) Nov 19, 2015
At the Inter-University Research Institute Corporation National Institutes of Natural Sciences National Institute for Fusion Science, for the first time in the world, using the newly installed "Plasma Simulator" we have simulated deuterium plasma turbulence in the Large Helical Device (LHD). From this result, we have clarified that the energy confinement in a deuterium plasma is improved i ... read more


ENERGY TECH
Red clover genome to help restore sustainable farming

Study suggests bees aren't the be all and end all for crop pollination

French chefs cook up a storm for climate

Climate change threatens Tunisia olive farming

ENERGY TECH
New access to the interior of electronic components

Semiconductor wafers exhibit strange quantum phenomenon at room temps

Stacking instead of mixing cools down the chips

Flexoelectricity is more than Moore

ENERGY TECH
Philippines goes supersonic again with S. Korean fighter jets

Boeing ends Globemaster production at Long Beach facility

Updated communications systems for China's Su-35 fighters

Philippine Air Force receiving South Korean FA-50 jets

ENERGY TECH
Volkswagen India to recall 323,700 cars over emissions scandal

French carmakers top European list of low CO2 emitters

Audi to spend 50 mn euros to repair diesel cars in US

German prosecutors say probing VW staff for tax evasion

ENERGY TECH
Start of work on Nicaragua canal delayed nearly a year Canal du Nicaragua

S. Korea ratifies free trade deal with China

Hungary to issue yuan bonds with Chinese blessing

China proposes firm to fund projects in Europe

ENERGY TECH
Tallest trees could die of thirst in rainforest droughts

'Traditional authority' linked to rates of deforestation in Africa

Amazon deforestation leaps 16 percent in 2015

Top civil servants probed over hardwood traffic in Gabon

ENERGY TECH
Timelapse from space reveals glacier in motion

Is That a Forest? That Depends on How You Define It

Earth's magnetic field is not about to flip

New satellite to measure plant health

ENERGY TECH
MIT mathematicians identify limits to heat flow at the nanoscale

Nanomagnets: Creating order out of chaos

Electric fields remove nanoparticles from blood with ease

Navy researchers recruit luminescent nanoparticles to image brain function









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.