GPS News  
ICE WORLD
Ice Age Antarctic Ocean gives clue to 'missing' atmospheric carbon dioxide
by Staff Writers
Syracuse NY (SPX) Apr 05, 2016


While past oceanic oxygen levels can provide insight to global carbon dioxide cycling, reconstructing past oxygenation conditions is quite a challenge. Enter foraminifera. Foraminifera have an external shell made of calcium carbonate, which traps signatures of their environment as they grow--including oxygen levels. These climate-related signatures are often preserved for millions of years in sediments accumulated on the ocean floor.

Climate is not constant on Earth. Consider ice ages coming and going as an example. Parallel to ice age cycles, atmospheric carbon dioxide reduces during glacial periods and increases during warmer times, although modern fossil fuel-related carbon dioxide emission broke this natural cyclicity. With the proper proxy measurements, scientists can look into these past cycles to determine how exactly climate systems were naturally governed.

Syracuse University Earth sciences Assistant Professor Zunli Lu says, "A million dollar question in understanding climate system is: Where and how was CO2 sequestered from the atmosphere during ice ages?"

Lu and international collaborators explored the question of carbon dioxide storage in the oceans. The team glimpsed into the ocean's past, thanks to a group of tiny ocean dwellers called foraminifera. The foraminifera were preserved in sediment cores taken from an underwater mountain in the Amundsen Sea, which is part of the ocean surrounding Antarctica. Their study on the ocean records, trapped in foraminifera shells, is published in Nature Communications.

Although it is accepted that atmospheric carbon dioxide was sucked deep into the ocean during ice ages, quantitative measures of how much was stored, and in what chemical form, have been hard to come by. One way to track carbon dioxide storage is by investigating its partner in respiration: oxygen.

Plankton photosynthesize near the ocean surface, taking in carbon dioxide. When the plankton die and sink to the ocean floor, the reverse process, respiration, happens. Respiration uses up oceanic oxygen and re-releases carbon dioxide in the deep ocean. Because of this relationship, low oxygen levels in a specific part of the ocean can flag where atmospheric carbon dioxide was stored during glacial periods.

While past oceanic oxygen levels can provide insight to global carbon dioxide cycling, reconstructing past oxygenation conditions is quite a challenge. Enter foraminifera. Foraminifera have an external shell made of calcium carbonate, which traps signatures of their environment as they grow--including oxygen levels. These climate-related signatures are often preserved for millions of years in sediments accumulated on the ocean floor.

Lu has spent years measuring iodine in calcium carbonate as a proxy for tracking oceanic oxygen levels. "These carbonates recorded almost the entire Earth's history , and we have one of the best ways of translating the oxygen stories out of these rocks and fossils" he says. Unlike most other oxygen proxies, iodine is able to detect relatively subtle changes in oxygen levels, not just presence or absence of the gas in seawaters.

Study co-author Babette Hoogakker of the University of Oxford seconds the power of this new proxy: "Its application allows the assessment of open ocean subsurface oxygenation states using planktonic foraminifera, which until now was virtually impossible."

Foraminifera from the group's study site in the high-latitude Antarctic indicate that the surrounding Southern Ocean reached very low levels of oceanic oxygen during ice ages. Co-author Ros Rickaby, also of Oxford, says, "It was a real surprise to discover that any part of the Southern Ocean, which today is so rich in oxygen, evolved naturally to contain such small amounts of this influential gas during the glacial period."

Co-author Claus-Dieter Hillenbrand of the British Antarctic Survey says, "Physical, chemical and biological changes in the World Ocean in general, and in the Southern Ocean in particular, played a crucial role for glacial-interglacial variations in atmospheric carbon dioxide concentrations and global climate change."

Or as Lu puts it: "The Southern Ocean is like a tap for CO2. When you open the tap, CO2 goes into the atmosphere and it becomes warm globally. When you partially shut that valve during an ice age, CO2 becomes lower in the atmosphere." Lu says that finding low oxygen in the high-latitude Southern Ocean gives insight into how the "valve" works during ice ages, and moreover points to the oxygenation conditions in vast volumes of deep waters connected to the Southern Ocean through ocean circulation.

Lu and colleagues hope that understanding the past cycles will give researchers foresight into the effects of modern and future global changes. While the level of atmospheric carbon dioxide routinely cycled between 200 and 280 parts per million in the past, the planet is currently faced with levels of 400 parts per million of the gas. "If we can explain the naturally oscillating recent climate, we may be able to make predictions for how modern warming might cause the marine environment to change in the future," Lu says.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Syracuse University
Beyond the Ice Age






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ICE WORLD
Sea-Level rise from Antarctic ice sheet could double
University Park PA (SPX) Mar 31, 2016
An ice sheet model that includes previously underappreciated processes indicates that sea level may rise almost 50 feet by 2500 due to Antarctic ice sheet melting if greenhouse gas emissions continue unabated, according to researchers from Penn State and University of Massachusetts, Amherst. "In this case the atmospheric warming will soon become the dominant driver of ice loss, but prolong ... read more


ICE WORLD
Study finds wide-reaching impact of nitrogen deposition on plants

McDonald's to add 1,500 outlets in China, Hong Kong, SKorea

Agriculture expansion could reduce rainfall in Brazil's Cerrado

Laser reveals water's secret life in soil

ICE WORLD
Taiwan's TSMC signs deal for $3 bn plant in China

New terahertz source could strengthen sensing applications

NIST's 'optomechanical transducer' links sound, light, radio waves

Unlocking the gates to quantum computing

ICE WORLD
Australia says possible MH370 debris found on Mauritius

Profits soar at China's big three airlines

UK defence chief says Qatar warplane deal 'on the table'

New material could make aircraft deicers a thing of the past

ICE WORLD
Tesla unveils cheaper model aimed at mass market

US sues Volkswagen for deceptive 'clean diesel' campaign

Newest Tesla electric will aim at middle market

US sues Volkswagen for deceptive 'clean diesel' campaign

ICE WORLD
Silk Road snaked farther south than previously thought

Amazon makes foray into fashion world

China's Midea buys 80% of Toshiba's home appliances arm

UK govt accused of prioritising China ties over steel jobs

ICE WORLD
Maximum sentences for killers of Costa Rica environmentalist

Massive deforestation discovered in Brazil's Cerrado region

Desert mangroves are major source of carbon storage

Data from 1800s helps forest managers maintain healthy forest ecosystems

ICE WORLD
Unravelling a geological mystery using lasers from space

Tracking deer by NASA satellite

Fairy circles discovered in Australia by researchers

NASA Airborne Mission Looks At Fires and Cooling Atlantic Clouds Decks

ICE WORLD
Heat and light get larger at the nanoscale

Nanolight at the edge

Nano-enhanced textiles clean themselves with light

Nature-inspired nanotubes that assemble themselves, with precision









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.