GPS News  
TIME AND SPACE
IU physicist leads discovery of new particle: '4-flavored' tetraquark
by Staff Writers
Bloomington IN (SPX) Mar 16, 2016


The new particle is the first tetraquark to contain four quarks of different "flavors." Image courtesy Fermilab. For a larger version of this image please go here.

Research led by Indiana University physicist Daria Zieminska has resulted in the first detection of a new form of elementary particle: the "four-flavored" tetraquark.

Zieminska, a senior scientist in the IU Bloomington College of Arts and Sciences' Department of Physics, is a lead member of the team responsible for the particle's detection by the DZero Collaboration at the U.S. Department of Energy's Fermi National Laboratory, which announced the discovery Feb. 25.

She also delivered the first scientific seminar on the particle and is an author on a paper submitted to Physics Review Letters, the premier journal in physics, describing the tetraquarks' observation.

"For most of the history of quarks, it's seemed that all particles were made of either a quark and an antiquark, or three quarks; this new particle is unique - a strange, charged beauty," said Zieminska, who has been a member of the DZero experiment since the project's establishment in 1985. "It's the birth of a new paradigm. Particles made of four quarks - specifically, two quarks and two antiquarks - is a big change in our view of elementary particles."

The results could also affect scientists' understanding of "quark matter," the hot, dense material that existed moments after the Big Bang, and which may still exist in the super-dense interior of neutron stars.

Quarks are the building blocks that form subatomic particles, the most familiar of which are protons and neutrons, each composed of three quarks. There are six types, or "flavors," of quarks: up, down, strange, charm, bottom and top. Each of these also has an antimatter counterpart.

A tetraquark is a group of four quarks, the first evidence for which was recorded by scientists on the Belle experiment in Japan in 2008. But the new tetraquark is the first quark quartet to contain four different quark flavors: up, down, strange and bottom.

Currently, Zieminska leads the "heavy flavor" group of the DZero experiment, which encompasses the study of all particles containing one or more "heavy quarks," including the new tetraquark, dubbed X(5568) for its mass of 5568 Megaelectronvolts, roughly 5.5 times the mass of a proton. The DZero experiment is led by Dmitri Denisov, a staff scientist at the U.S. Department of Energy's Fermilab.

"Daria was the lead person on the tetraquark observation and performed calculations, cross-checking and other work required to answer the hundreds of questions of the rest of the team," said Denisov, co-spokesman for the DZero experiment. "She was an active participant in the design and construction of the experiment and in the collection of the data."

The DZero experiment is also responsible for other fundamental physics discoveries, including the first observation, with the Collider-Detector at Fermilab experiment, of the elusive Higgs boson particle decaying into bottom quarks.

Other IU scientists engaged in the DZero project include the late Andrzej Zieminski, former professor of physics at IU Bloomington, who also joined the project in 1985, and Rick Van Kooten, IU vice provost for research, who joined in 2002 during "phase 2" of the project, which involved upgrades to the detector partially constructed at IU. Hal Evans, professor, and Sabine Lammers, associate professor, both at IU, also contributed to the upgraded detector.

DZero is one of two experiments collecting data from Fermilab's Tevatron proton-antiproton collider, once the most powerful particle accelerator in the world, officially retired in 2011. Zieminska and colleagues uncovered the existence of X(5568) based on analysis of billions of previously recorded events from these collisions.

As with other discoveries in physics, Zieminska said the new tetraquark's discovery was a surprise. Alexey Drutskoy, a colleague at Russia's National Research Nuclear University, spotted indications of the tetraquark signal in summer 2015, after which Zieminska joined him in the hunt. Only after performing multiple cross-checks, in collaboration with Alexey Popov, another Russian colleague, did the team confirm they were observing evidence for a new particle.

Although nothing in nature forbids the formation of a tetraquark, four-quark states are rare and not nearly as well understood as two- and three-quark states. Zieminska and colleagues plan to deepen their understanding of the tetraquark by measuring various properties of the particle, such as the ways it decays or how much it spins on its axis.

The discovery of the tetraquark also comes on the heels of the first observation of a pentaquark - a five-quark particle - announced last year by CERN's LHCb experiment at the Large Hadron Collider.

Zieminska is also a member of the ATLAS Experiment at CERN, the European Organization for Nuclear Research.

A total of 75 institutions from 18 countries are members of the DZero Collaboration.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Indiana University
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Do we see the trailer for the upcoming blockbuster of LHC?
Warsaw, Poland (SPX) Mar 13, 2016
In light of the latest analysis on the decay of beauty mesons, the dawn of a new era, that of 'new physics', may be approaching. An important contribution to the analysis has been made by physicists from the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) from Poland. We can't call it a discovery. Not yet. However, there are some indications that physicists working ... read more


TIME AND SPACE
Fertilizer applied to fields today will pollute water for decades

Unease over Chinese investors buying farms Down Under

Pesticides affect bees' ability to locate flowers, drink nectar

US gives tentative OK to testing genetically modified mosquitoes

TIME AND SPACE
Quantum computer factors numbers, could be scaled up

Spinning better electronic devices

Artificial control of exciplexes opens possibilities for new electronics

Demystifying mechanotransduction ion channels

TIME AND SPACE
Lockheed Martin delivers KC-130J refuelers to Saudi Arabia

Second CH-53K helicopter enters testing program

Australia pursues buoyancy system for helicopters

L-3 performing depot-level maintenance on F/A-18s

TIME AND SPACE
China minister warns on subsidies as Uber, Didi battle

Investors sue VW in Germany for more than 3 bn euros

GM buys self-driving technology startup Cruise

GM, Lyft launch car rental program for drivers

TIME AND SPACE
'Forced labour' for thousands of maids in Hong Kong: report

China's Anbang in huge US hotel buying spree

China's next bubble? Iron ore surges as speculators weigh in

Australian logistics giant Asciano broken up in $6.8 bn joint takeover

TIME AND SPACE
CCTV in the sky helping farmers fight back against illegal loggers

Eastern US forests more vulnerable to drought than before 1800s

Austin's urban forest

US joins Honduran probe of environmentalist's murder

TIME AND SPACE
New NASA Instruments to Study Air Pollution, Cyclones

Eyeing Climate Change, Satellites Provide Missing Information

Sentinel-3A continues to impress

Satellites and shipwrecks

TIME AND SPACE
NIST invents fleet and fast test for nanomanufacturing quality control

Building a better mouse trap, from the atoms up

From backyard pool chemical to nanomaterial

Nanoparticles on nanosteps









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.