GPS News  
Hummocky And Shallow Maunder Crater

The above image shows the striking Maunder crater located in the region of Noachis Terra on Mars. The crater lies at 50 South and 2 East. The High Resolution Stereo Camera (HRSC) on ESA's Mars Express orbiter took pictures of the Noachis Terra region during orbits 2412 and 2467 on 29 November and 14 December 2005 respectively, with a ground resolution of approximately 15 metres per pixel. Named after the british astronomer Edward W. Maunder, the crater located halfway between Argyre Planitia and Hellas Planitia on the southern Highlands of Mars. This perspective view has been calculated from the digital terrain model derived from the HRSC stereo channels. Credits: ESA/DLR/FU Berlin (G. Neukum)
by Staff Writers
Paris, France (ESA) Oct 17, 2007
The High Resolution Stereo Camera (HRSC) on ESA's Mars Express orbiter has obtained pictures of the Noachis Terra region on Mars, in particular, the striking Maunder crater. The images were taken in orbits 2412 and 2467 on 29 November and 14 December 2005 respectively, with a ground resolution of approximately 15 metres per pixel. Maunder crater lies at 50 South and 2 East, approximately in the center of Noachis Terra. The sun illuminates the scene from the north-east (top left in the image).

The impact crater, named after the british astronomer Edward W. Maunder (1851-1928), is located halfway between Argyre Planitia and Hellas Planitia on the southern Highlands of Mars.

With a diameter of 90 kilometres and a depth of barely 900 metres, the crater is not one of the largest impact craters on Mars at present, but it used to be much deeper. It has since been filled partially with large amounts of material.

The west of the crater experienced a major slope failure, during which a large landslide transported loose material eastward, to the inner parts of the crater. The edges of the crater rim that collapsed exhibit gullies which might be associated with the mass transport of the material.

The transition zone from the western rim of the crater to the rather smooth crater floor on the eastern edge shows hummocky terrain. Such terrain exhibits small, irregularly-shaped hills and valleys. The hummocky terrain in the Maunder crater was formed by deposition of landslide debris.

In the east, the crater floor is bounded by a trough, approximately 700 metres deep. The trough may be associated with a landslide on the western edge of the crater. Some gullies can be seen on the upper edge of the trough which is possible evidence for water seepage.

The small, 500 to 2500-metre long, dark features on the crater floor are eye-catching. These features are called Barchan dunes, one of the most abundant dune forms in arid environments. Dunes of this kind are also found on Earth, for example in the West-African Namib desert.

The colour scenes have been derived from the three HRSC-colour channels and the nadir channels. The perspective views have been calculated from the digital terrain model derived from the HRSC stereo channels. The anaglyph image was calculated from the nadir channels and two stereo channels, stereoscopic glasses are required for viewing. The 3-D (anaglyph) picture has been put together from several individual 3-D images of different scenes, enhancing the view over larger areas.

Related Links
Mars Express
Mars News and Information at MarsDaily.com
Lunar Dreams and more



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


The Mysterious Ridges At The Mouth Of Tiu Valles
Paris, France (ESA) Sep 13, 2007
These images taken by the High Resolution Stereo Camera (HRSC) on board Mars Express show the mouth of the Tiu Valles channel system on the red planet. The pictures were taken in orbit 3103 on 10 June 2006 with a ground resolution of approximately 16 metres per pixel. The mouth of Tiu Valles is an estuary-like landform. On Earth, an estuary is the tidal mouth of a river valley, or the end that meets the sea and fresh water comes into contact with seawater. In such an area, tidal effects are evident.







  • MEPs seek limits on aircraft emissions by 2010
  • Aircraft And Automobiles Thrive In Hurricane-Force Winds At Lockheed Martin
  • New Delft Material Concept For Aircraft Wings Could Save Billions
  • Cathay Pacific chief hits out at anti-aviation critics

  • Computer Simulator Allows Visually Impaired To Drive
  • For Japanese automakers, the future's green and groovy
  • CU Researchers Shed Light On Light-Emitting Nanodevice
  • General Motors To Make 250,000 Chevrolets Per Year In Uzbekistan

  • Raytheon Sensor Netting Technology Contract
  • Northrop Grumman Actively Pursuing MP-RTIP Radar Enhancement For Joint STARS Platform
  • Boeing Advanced Military Satellite Begins On-Orbit Checkout
  • USAF Launches First Of Next Gen Communications Satellites

  • Putin sees US shift in missile shield row
  • Lockheed Martin Inaugurates Target Single Integration Capability For The MDA
  • BMD Focus: Barak's BMD strategy -- Part 2
  • Outside View: U.S., Russia at odds on BMD

  • Satellites Help Ensure Efficient Use Of Pesticides
  • Diet With Some Meat Uses Less Land Than Vegetarian Diets
  • Alternative Food Networks Connect Ethical Producers And Consumers, Leads To Healthier Eating
  • Salmonid Hatcheries Cause Stunning Loss Of Reproduction

  • Satellites Help Save Lives
  • Vietnam villagers face hunger amid floods
  • 3,000 evacuated after China landslide blocks river
  • Running Shipwreck Simulations Backwards Helps Identify Dangerous Waves

  • Novel Gate Dielectric Materials: Perfection Is Not Enough
  • Software Overcomes Problems Of Operating Research Tools Over The Internet
  • Stroll virtual world without moving a finger
  • Small is beautiful: Incredible shrinking memory drives new IT

  • Japan's robot industry forecasts strong growth
  • Robotic Rockhounds: Interview with David Wettergreen Part 2
  • Robots With Legs
  • Roving The Moon

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement