Subscribe free to our newsletters via your
. GPS News .




CHIP TECH
Huge reduction of heat conduction observed in flat silicon channels
by Staff Writers
Barcelona, Spain (SPX) Apr 27, 2015


The different circles represent the studied surfaces of the Si membranes: crystalline, rough, flat with native SiO2, and rough with native SiO2. The right image shows a representative thermal map on the membranes upon a localized thermal excitation used to measure the thermal conductivity. Image courtesy ICN2. For a larger version of this image please go here.

The ability of materials to conduct heat is a concept that we are all familiar with from everyday life. The modern story of thermal transport dates back to 1822 when the brilliant French physicist Jean-Baptiste Joseph Fourier published his book "Theorie analytique de la chaleur" (The Analytic Theory of Heat), which became a corner stone of heat transport. He pointed out that the thermal conductivity, i.e., ratio of the heat flux to the temperature gradient is an intrinsic property of the material itself.

The advent of nanotechnology, where the rules of classical physics gradually fail as the dimensions shrink, is challenging Fourier's theory of heat in several ways. A paper published in ACS Nano and led by researchers from the Max Planck Institute for Polymer Research (Germany), the Catalan Institute of Nanoscience and Nanotechnology (ICN2) at the campus of the Universitat Autonoma de Barcelona (UAB) (Spain) and the VTT Technical Research Centre of Finland (Finland) describes how the nanometre-scale topology and the chemical composition of the surface control the thermal conductivity of ultrathin silicon membranes. The work was funded by the European Project Membrane-based phonon engineering for energy harvesting (MERGING).

The results show that the thermal conductivity of silicon membranes thinner than 10 nm is 25 times lower than that of bulk crystalline silicon and is controlled to a large extent by the structure and the chemical composition of their surface. Combining state-of-the-art realistic atomistic modelling, sophisticated fabrication techniques, new measurement approaches and state-of-the-art parameter-free modelling, researchers unravelled the role of surface oxidation in determining the scattering of quantized lattice vibrations (phonons), which are the main heat carriers in silicon.

Both experiments and modelling showed that removing the native oxide improves the thermal conductivity of silicon nanostructures by almost a factor of two, while successive partial re-oxidation lowers it again. Large-scale molecular dynamics simulations with up to 1,000,000 atoms allowed the researchers to quantify the relative contributions to the reduction of the thermal conductivity arising from the presence of native SiO2 and from the dimensionality reduction evaluated for a model with perfectly specular surfaces.

Silicon is the material of choice for almost all electronic-related applications, where characteristic dimensions below 10 nm have been reached, e.g. in FinFET transistors, and heat dissipation control becomes essential for their optimum performance. While the lowering of thermal conductivity induced by oxide layers is detrimental to heat spread in nanoelectronic devices, it will turn useful for thermoelectric energy harvesting, where efficiency relies on avoiding heat exchange across the active part of the device.

The chemical nature of surfaces, therefore, emerges as a new key parameter for improving the performance of Si-based electronic and thermoelectric nanodevices, as well as of that of nanomechanical resonators (NEMS). This work opens new possibilities for novel thermal experiments and designs directed to manipulate heat at such scales.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Universitat Autonoma de Barcelona
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Unraveling the origin of the pseudogap in a charge density wave compound
Lemont IL (SPX) Apr 21, 2015
The pseudogap, a state characterized by a partial gap and loss of coherence in the electronic excitations, has been associated with many unusual physical phenomena in a variety of materials ranging from cold atoms to colossal magnetoresistant manganese oxides to high temperature copper oxide superconductors. Its nature, however, remains controversial due to the complexity of these materials and ... read more


CHIP TECH
Could smell hold the key to ending pesticide use

Dutch saltwater potatoes offer hope for world's hungry

Bumblebee genomes create a buzz in the field of pollination

The appeal of being anti-GMO

CHIP TECH
Huge reduction of heat conduction observed in flat silicon channels

Researchers develop acoustically driven controls for smartphones

From metal to insulator and back again

Drexel materials scientists putting a new spin on computing memory

CHIP TECH
NASA Balloon Reaches Australia After Nearly One Month of Flight

NASA, Boeing ecoDemonstrator set anti-bug research

Lightweight membrane can significantly reduce in-flight aircraft noise

Birds of prey help NATO warplanes police Baltic air

CHIP TECH
Vehicle cost, lack of information hinder purchases of plug-in electric vehicles

San Luis Obispo adds another EV Charge Hub Site on SunTrail Route

Car makers to profit from China's booming used market

Toyota tops global automaker sales in Q1

CHIP TECH
Iran seizes cargo ship in Strait of Hormuz

Obama, Abe say not opposed to China infrastructure bank

China opens bank card clearing sector to foreign firms

China to launch three new free-trade zones

CHIP TECH
Romanian forests face 'acute' illegal logging problem

Forest paradise re-emerges in Philippine capital

Conifer study illustrates twists of evolution

Amazon rainforest losses impact on climate change

CHIP TECH
Egyptian Space Authority Denies Losing Control of EgyptSat Two Satellite

DigitalGlobe offers high resolution satellite map of Aafrica

NASA's ATLAS thermal testing: You're hot, then you're cold

ADS to build first Franco-German Earth observation satellite MERLIN

CHIP TECH
Happily ever after: Scientists arrange protein-nanoparticle marriage

Chemists create tiny gold nanoparticles that reflect nature's patterns

Optics, nanotechnology combined to create low-cost sensor for gases

Water makes wires even more nano




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.