Subscribe free to our newsletters via your
. GPS News .




SKY NIGHTLY
Hubble Space Telescope finds source of Magellanic Stream
by Staff Writers
Greenebelt MD (SPX) Aug 09, 2013


File image.

Astronomers using NASA's Hubble Space Telescope have solved a 40-year mystery on the origin of the Magellanic Stream, a long ribbon of gas stretching nearly halfway around our Milky Way galaxy.

The Large and Small Magellanic Clouds, two dwarf galaxies orbiting the Milky Way, are at the head of the gaseous stream. Since the stream's discovery by radio telescopes in the early 1970s, astronomers have wondered whether the gas comes from one or both of the satellite galaxies. New Hubble observations reveal most of the gas was stripped from the Small Magellanic Cloud about 2 billion years ago, and a second region of the stream originated more recently from the Large Magellanic Cloud.

A team of astronomers, led by Andrew J. Fox of the Space Telescope Science Institute in Baltimore, Md., determined the source of the gas filament by using Hubble's Cosmic Origins Spectrograph to measure the amount of heavy elements, such as oxygen and sulfur, at six locations along the Magellanic Stream.

They observed faraway quasars, the brilliant cores of active galaxies, that emit light that passes through the stream. They detected the heavy elements from the way the elements absorb ultraviolet light.

Fox's team found a low amount of oxygen and sulfur along most of the stream, matching the levels in the Small Magellanic Cloud about 2 billion years ago, when the gaseous ribbon is thought to have formed. In a surprising twist, the team discovered a much higher level of sulfur in a region of the stream that is closer to the Magellanic Clouds.

"We're finding a consistent amount of heavy elements in the stream until we get very close to the Magellanic Clouds, and then the heavy element levels go up," said Fox. "This inner region is very similar in composition to the Large Magellanic Cloud, suggesting it was ripped out of that galaxy more recently."

"Only Hubble can measure these abundances," Fox explained. "These abundances can only be measured in ultraviolet light, which Earth's atmosphere absorbs, and so the observations can only be done from a telescope in space."

Unlike other satellite galaxies of the Milky Way the Magellanic Clouds have been able to retain their gas and still are forming stars because they're more massive than the other satellites. However, as they're now approaching the Milky Way, they're feeling its gravity more and also encountering its halo of hot gas, which pushes their own gas out. That process, together with the gravitational tug-of-war between the Magellanic Clouds, leads to the production of a stream.

Ultimately, the gaseous stream may rain down onto the Milky Way's disk, fueling the birth of new stars. This infusion of fresh gas is part of a process that triggers star formation in a galaxy. Astronomers want to know the origin of that wayward gas in order to more fully understand how galaxies make new stars.

"We want to understand how galaxies like the Milky Way strip the gas from small galaxies that fall into them and then use it to form new stars," Fox explained. "This seems like it's an episodic process. It's not a smooth process where a slow stream of gas comes in continuously. Instead, once in a while a large gas cloud falls in. We have a way of testing that here, where two galaxies are coming in. We've shown which of them is producing the gas that ultimately will fall into the Milky Way."

The team reported its results in two papers that appeared in the Aug. 1 issue of the Astrophysical Journal. Fox is the lead author of one paper; the other paper's lead author is Philipp Richter of the University of Potsdam in Germany.

.


Related Links
Goddard Space Flight Center
Astronomy News from Skynightly.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SKY NIGHTLY
Three Planets Converge In Western Twilight May 25-28
Austin TX (SPX) May 22, 2013
The two brightest planets, Venus and Jupiter, will help you find a fainter one, Mercury, as all three shine together in the western twilight about half an hour after sunset this Saturday and for a few days after, according to the editors of StarDate magazine. Although they are quite low in the western sky as darkness begins to fall, Venus and Jupiter are so bright that, with a clear horizo ... read more


SKY NIGHTLY
Existing cropland could feed four billion more

Soil carbon 'blowing in the wind'

Citizen scientists rival experts in analyzing land-cover data

France predicts bumper champagne production this year

SKY NIGHTLY
Speed limit set for ultrafast electrical switch

NRL Researchers Discover Novel Material for Cooling of Electronic Devices

Nanotechnology breakthrough is big deal for electronics

Broadband photodetector for polarized light

SKY NIGHTLY
Chinese jetliner's first flight set back a year: state media

South Korea resumes bidding in jet fighter deal

Lockheed Martin to Offer Universal Mission Equipment Package for US Army Helicopters

Bahrain eyes Eurofighter: BAE

SKY NIGHTLY
High temperature capacitor could pave the way for electric vehicle

China vehicle sales growth slows in July

S. Korea tests 'electric road' for public buses

BMW China venture to recall more than 140,000 cars: officials

SKY NIGHTLY
Retailers Tesco,CRE plan China giant

China fines formula firms $108 million for price-fixing

Head of China Resources denies corruption allegations

China July exports, imports unexpectedly jump

SKY NIGHTLY
One tree's architecture reveals secrets of a forest

Could planting trees in the desert mitigate climate change

Wasps being used to fight tree disease

Drought making trees more susceptible to dying in forest fires

SKY NIGHTLY
Africa's ups and downs

Lockheed Completes Solar UV Imager For GOES-R Enviro Tests

GOES-R Satellite Magnetometer Boom Deployment Successful

NASA's Van Allen Probes Discover Particle Accelerator in the Heart of Earth's Radiation Belts

SKY NIGHTLY
Heterogeneous nanoblocks give polymers an edge

Size matters in nanocrystals' ability to adsorb release gases

Gold nanoparticles improve photodetector performance

Water clears path for nanoribbon development




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement