GPS News  
ROBO SPACE
How to control the unknown: Novel method for robotic manipulation
by Staff Writers
Beijing, China (SPX) Jan 11, 2017


Optimal control is the goal in most robotic systems. It's the budget of the system - how to achieve the goals at the lowest cost possible.

A simple, linear robot is easy to control. With known goals and a clear understanding of variables, a controller tells the robot the rules to follow. If button A is pressed, for example, pick up an item from the conveyor belt. The item can either be moved to a different belt, or disposed of completely.

A more complicated, nonlinear robot is more difficult. The rules change when neither the goals nor the variables are understood.

"The knowledge of system dynamics is completely unknown and system states are not available... therefore, it is desirable to design a novel control scheme that does not need the exact knowledge of system dynamics but only the input and output data measured during the operation of the system," said Dr. Zhijun Fu, a researcher in the department of mechanical engineering at Zhejiang University, China.

Fu and his research team published a paper describing this novel control scheme in IEEE/CAA Journal of Automatica Sinica (JAS).

The scientists first had to determine the system states in order to figure out how to control them. They implemented a neural network - an artificial brain capable of quick assessment and learning - to observe the system at multiple time scales and to update its information as it studies.

"We cannot apply existing actor-based methods to unknown nonlinear systems directly," Fu said, explaining the appeal of an observer-based method. An actor must be told what to do, while the observer watches the system to learn the requirements for optimal control.

Optimal control is the goal in most robotic systems. It's the budget of the system - how to achieve the goals at the lowest cost possible.

"The proposed method may be used [in] industrial systems with 'slow' and 'fast' dynamics, due to the presence of some... parameters, such as small time constants," Fu said.

Such variable dynamics can typically cost a system a lot, in terms of energy and resources. An observer-based method takes into account each type of parameter and adjusts ideally.

This method also accounts for a common system control problem: the overwhelming of actuators. Actuators, the physical sensors in automated machines, can become saturated with information and stop working properly. Since this control method accounts for input constraints (since only the input and output data are measured), the actuators avoid saturation.

Not all of the system control problems are solved, though.

"[In this paper,] we don't consider the state constraints problem," Fu said, referring to potential limitations that scientists may need to apply to a robotic system in some situations. "[Future] research will be dedicated to solving this problem."

Z. J. Fu, W. F. Xie, S. Rakheja, and J. Ma, "Observer-based adaptive optimal control for unknown singularly perturbed nonlinear systems with input constraints," IEEE/CAA Journal of Automatica Sinica, Vol. 4, no.1, pp. 33-42, Jan. 2017.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Chinese Association of Automation
All about the robots on Earth and beyond!






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ROBO SPACE
Brazil orders remote-controlled weapon stations from Elbit
Haifa, Israel (UPI) Jan 9, 2017
A Brazilian subsidiary of Israel's Elbit Systems has received a framework contract to supply remote-controlled weapon stations to the Brazilian army. The contract to Ares Aeroespacial e Defesa S.A. for 12.7/7.62mm REMAX weapon stations is worth $100 million and includes provision of associated equipment and services. Elbit Systems said an initial production order, valued at about ... read more


ROBO SPACE
21 farmers granted bail in Myanmar army land-grabbing case

How we shop hurts endangered species

A trip to the land of endangered ancient olive trees

Chickens are smarter and more complex than given credit for

ROBO SPACE
Researchers create practical and versatile microscopic optomechanical device

Illinois team advances GaN-on-Silicon for scalable high electron mobility transistors

Germanium's semiconducting and optical properties probed under pressure

Random access memory on a low energy diet

ROBO SPACE
Russian Defense Ministry discusses aircraft modernization plans

Vanilla aircraft proves to be anything but plain

Leonardo Helicopters wins U.K. military support deal

U.S. Air Force upgrades A-10C search capability

ROBO SPACE
New technology will cut plug-in hybrid fuel consumption by one third

VW directors knew of emissions scandal earlier: press

NAVYA Self-driving shuttle goes to work in Las Vegas

Cadillac keeps plan to sell Chinese-made cars in US

ROBO SPACE
Ma's million jobs pledge more PR than promise: analysts

Trump's China trademarks risk constitutional crisis: experts

China makes awkward free trade champion

Chinese president to headline Davos meet: WEF

ROBO SPACE
Philippine minister says Dora can't explore pristine Palawan

Study: Trees with thicker bark are more resistant to fire

Measuring trees with the speed of sound

In cool forests, foraging bees prefer the warmth of darker flower petals

ROBO SPACE
NASA Study Finds a Connection Between Wildfires and Drought

Astronomers consider how climate change mitigation may impact astronomy

First colour image for joint UK and Algerian CubeSat

Newly proposed reference datasets improve weather satellite data quality

ROBO SPACE
Zeroing in on the true nature of fluids within nanocapillaries

Nano-chimneys can cool circuits

The researchers created a tiny laser using nanoparticles

Nanoscale 'conversations' create complex, multi-layered structures









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.